Determinants of ligand binding affinity and cooperativity at the GLUT1 endofacial site.

Biochemistry

Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street Worcester, Massachusetts 01605, United States.

Published: April 2011

Cytochalasin B (CB) and forskolin (FSK) inhibit GLUT1-mediated sugar transport in red cells by binding at or close to the GLUT1 endofacial sugar binding site. Paradoxically, very low concentrations of each of these inhibitors produce a modest stimulation of sugar transport [ Cloherty, E. K., Levine, K. B., and Carruthers, A. ((2001)) The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Biochemistry 40 ((51)) 15549-15561]. This result is consistent with the hypothesis that the glucose transporter contains multiple, interacting, endofacial binding sites for CB and FSK. The present study tests this hypothesis directly and, by screening a library of cytochalasin and forskolin analogues, asks what structural features of endofacial site ligands determine binding site affinity and cooperativity. Like CB, FSK competitively inhibits exchange 3-O-methylglucose transport (sugar uptake in cells containing intracellular sugar) but noncompetitively inhibits sugar uptake into cells lacking sugar at 4 °C. This refutes the hypothesis that FSK binds at GLUT1 endofacial and exofacial sugar binding sites. Some forskolin derivatives and cytochalasins inhibit equilibrium [(3)H]-CB binding to red cell membranes depleted of peripheral proteins at 4 °C. Others produce a moderate stimulation of [(3)H]-CB binding when introduced at low concentrations but inhibit binding as their concentration is increased. Yet other analogues modestly stimulate [(3)H]-CB binding at all inhibitor concentrations applied. These findings are explained by a carrier that presents at least two interacting endofacial binding sites for CB or FSK. We discuss this result within the context of models for GLUT1-mediated sugar transport and GLUT1 quaternary structure, and we evaluate the major determinants of ligand binding affinity and cooperativity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465710PMC
http://dx.doi.org/10.1021/bi1020327DOI Listing

Publication Analysis

Top Keywords

binding
12
affinity cooperativity
12
glut1 endofacial
12
sugar transport
12
binding sites
12
[3h]-cb binding
12
sugar
10
determinants ligand
8
ligand binding
8
binding affinity
8

Similar Publications

p62 Binding to Protein Kinase C Regulates HIV-1 gp120 V3 Loop Induced Microglial Inflammation.

Inflammation

December 2024

Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China.

The main pathogenic mechanism of HIV-associated neurocognitive disorders (HAND) is neuronal apoptosis induced by inflammatory mediators, in which microglial inflammation plays a crucial role. However, the exact pathogenic mechanism remains unclear. Previous studies have shown that the HIV-1 gp120 V3 loop can trigger inflammation in CHME-5 microglia.

View Article and Find Full Text PDF

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

Glimepiride (GLM) is one of the potential antidiabetic drugs used in clinics for a long time. It is currently used in combination with metformin along with other drugs, but has shown various complications in patients from long-term use. Thus, the hypothesis is to use a lower dose of GLM with a non-toxic class of flavonoid, naringin (NARN), for better therapy with minimal side-effects.

View Article and Find Full Text PDF

Identification of novel BCR::ABL1 kinase domain mutation in patients with chronic myeloid leukaemia and imatinib resistance.

Malays J Pathol

December 2024

National Institutes of Health, Institute for Medical Research, Cancer Research Centre, Haematology Unit, 40170 Shah Alam, Selangor, Malaysia.

Introduction: The emergence of mutations in the BCR::ABL1 kinase domain (KD) impairs imatinib mesylate (IM) binding capacity, thus contributing to IM resistance. Identification of these mutations is important for treatment decisions and precision medicine in chronic myeloid leukaemia (CML) patients. Our study aims to determine the frequency of BCR::ABL1 KD mutations in CML patients with IM resistance.

View Article and Find Full Text PDF

Background: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.

Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!