The development of an ion mobility spectrometer with an injection molded plastic drift tube made from carbon-loaded nylon and the cyclo-olefinpolymer Zeonex is described. Thermogravimetric assessment combined with headspace analysis by ion mobility spectrometry and gas chromatography-mass spectrometry indicated that Zeonex encapsulated carbon-loaded nylon could be used to fabricate a snap-together injection molded stacked ring drift tube, 4.25 cm long that could be substituted for a conventional wire-wound heated ceramic drift tube of the same length into a high temperature ion mobility spectrometer. Temperature stability experiments indicated that such a combination of polymers produced stable water-based reactant ion peaks [(H(2)O)(n)H](+) up to a temperature of approximately 50 °C. Above this temperature, ammonia appeared to outgas, resulting in the production of [(H(2)O)(n)(NH(4))(m)H](+) type species before, at higher temperatures, the release of oligomeric entities suppressed resolved ion responses. Surface charging effects were also observed, and over a period of continuous operation of 4 h, these caused suppression of the signal intensity (1.11-0.954 V) and an apparent mobility shift in the observed responses (K(0) = 1.86-1.90 cm(2) V(-1) s(-1)). Substituting nylon, a polymer with a significantly lower surface resistivity, for the Zeonex demonstrated how surface charging phenomena could be managed though control of surface resistivity in future polymer formulations. The device was challenged successfully with test atmospheres of hexan-1-ol (K(0) = 1.66 cm(2) V(-1) s(-1) (monomer) and 1.32 cm(2) V(-1) s(-1)(dimer)) and dimethylmethyl phosphonate (K(0) = 1.70 cm(2) V(-1) s(-1) (monomer) and 1.44 cm(2) V(-1) s(-1) (dimer)). The potential advantages of developing polymeric systems using more advanced polymer formulations are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac102997m | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
Two-dimensional (2D) carbon allotropes, together with their binary and ternary counterparts, have attracted substantial research interest due to their peculiar geometries and properties. Among them, grapheneplus, a derivative of penta-graphene, has been proposed to exhibit unusual mechanical and electronic behaviour. In this work, we perform a comprehensive first-principles study on its isoelectronic and isostructural analogue, a grapheneplus-like BCN (gp-BCN) monolayer.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Applied Physics and Computational Mathematics, Beijing 100088, People's Republic of China.
Strain engineering is an effective method to modulate the electronic properties of two-dimensional materials. In this study, we theoretically studied the carrier mobility of the PdAs monolayer under different biaxial tensile strains based on the state-of-the-art electron-phonon coupling theory. We observe that the carrier mobility is largely enhanced for both n-type and p-type PdAs monolayers.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute for Computational Materials Science, Joint Center for Theoretical Physics, and Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
Two-dimensional (2D) materials have attracted enormous research attention due to their remarkable properties and potential applications in electronic and optoelectronic devices. In this work, Janus 2D copper-containing chalcogenides, CuPSeS and CuPTeSe monolayers, are proposed and studied systematically based on first-principles calculations. These two Janus-structured materials possess the same thermal and dynamic stability as the perfect CuPSe structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.
Materials with high crystallographic symmetry are supposed to be good thermoelectrics because they have high valley degeneracy () and superb carrier mobility (μ). Binary GeSe crystallizes in a low-symmetry orthorhombic structure accompanying the stereoactive 4s lone pairs of Ge. Herein, we rationally modify GeSe into a high-symmetry rhombohedral structure by alloying with GeTe based on the valence-shell electron-pair repulsion theory.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, Building 310, 2800 Kgs. Lyngby, Denmark.
The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!