CdS/CdSe-sensitized nanostructured SnO(2) solar cells exhibiting record short-circuit photocurrent densities have been fabricated. Under simulated AM 1.5, 100 mW cm(-2) illumination, photocurrents of up to 17.40 mA cm(-2) are obtained, some 32% higher than that achieved by otherwise identical semiconductor-sensitized solar cells (SSCs) employing nanostructured TiO(2). An overall power conversion efficiency of 3.68% has been achieved for the SnO(2)-based SSCs, which compares very favorably to efficiencies obtained by the TiO(2)-based SSCs. The characteristics of these SSCs were studied in more detail by optical measurements, spectral incident photon-to-current efficiency (IPCE) measurements, and impedance spectroscopy (IS). The apparent conductivity of sensitized SnO(2) photoanodes is apparently too large to be measured by IS, yet for otherwise identical TiO(2) electrodes, clear electron transport features could be observed in impedance spectra, tacitly implying slower charge transport in TiO(2). Despite this, electron diffusion length measurements suggest that charge collection losses are negligible in both kinds of cell. SnO(2)-based SSCs exhibit higher IPCEs compared with TiO(2)-based SSCs which, considering the similar light harvesting efficiencies and the long electron diffusion lengths implied by IS, is likely to be due to a superior charge separation yield. The resistance to charge recombination is also larger in SnO(2)-based SSCs at any given photovoltage, and open-circuit photovoltages under simulated AM 1.5, 100 mW cm(-2) illumination are only 26-56 mV lower than those obtained for TiO(2)-based SSCs, despite the conduction band minimum of SnO(2) being hundreds of millielectronvolts lower than that of TiO(2).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn200315b | DOI Listing |
Chem Asian J
January 2025
Kyoto University - Uji Campus: Kyoto Daigaku - Uji Campus, Institute for Chemical Research, Gokasho, 611-0011, Uji, JAPAN.
The development of efficient electron-collecting monolayer materials is desired to lower manufacturing costs and improve the performance of regular (negative-intrinsic-positive, n-i-p) type perovskite solar cells (PSCs). Here, we designed and synthesized four electron-collecting monolayer materials based on thiazolidinone skeletons, with different lowest-unoccupied molecular orbital (LUMO) levels (rhodanine or thiazolidinedione) and different anchoring groups to the transparent electrode (phosphonic acid or carboxylic acid). These molecules, when adsorbed on indium tin oxide (ITO) substrates, lower the work function of ITO, decreasing the energy barrier for electron extraction at the ITO/perovskite interface and improving the device performance.
View Article and Find Full Text PDFChemistry
January 2025
Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.
Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China Agricultural University, College of Materials and Energy, CHINA.
Carbon-based perovskite solar cells (C-PSCs) have the advantages of high stability and low cost, but their mean efficiency has become an obstacle to commercialization. Defects, which are widely distributed on the surface and bulk of films, are an important factor in C-PSCs for low efficiency. The conventional post-treatment method through forming a low-dimensional (LD) perovskite layer usually fails in manipulating the bulk defects.
View Article and Find Full Text PDFSmall
January 2025
School of Electronics and Information, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, 710129, China.
As organic solar cells (OSCs) achieve notable advancements, a significant consensus has been highlighted that the device performance is intricately linked to the active layer morphology. With conjugated molecules being widely employed, intermolecular interactions exert substantial influence over the aggregation state and morphology formation, resulting in distinct molecular packing motifs, also known as polymorphism. This phenomenon is closely associated with processing conditions and exerts a profound impact on functional properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
City University of Hong Kong, Chemistry, HONG KONG.
Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!