Background: Changes in activity of polyphenol oxidase (PPO), peroxidase (POD) and β-glucosidase, individual phenolic compounds other than anthocyanins, total phenols, monomeric anthocyanins, polymeric color and instrumental color of strawberry pulps were assessed after high hydrostatic pressure (HHP) (400-600 MPa 5-25 min(-1)) at room temperature.
Results: β-Glucosidase was activated by 4.7-16.6% at 400 MPa 5-25 min(-1) and inactivated by 8.0-41.4% at 500 or 600 MPa. PPO and POD were inactivated at all pressures, the largest reduction in activity being 41.4%, 51.5% and 74.6%, respectively. The individual phenolic compounds and total phenols decreased at 400 MPa, but total phenols increased at 500 or 600 MPa. However, the monomeric anthocyanins, polymeric color and redness (a*) exhibited no change. HHP induced a decrease in lightness (L*) and an increase in yellowness (b*) at 400 MPa, but no significant alteration in L* value and b* value at 500 or 600 MPa was observed; this was attributed to higher residual activity of PPO, POD and β-glucosidase at 400 MPa. Total color difference (ΔE) was ≥5 at 400 MPa and ≤3 at 500 or 600 MPa.
Conclusion: HHP effectively retained anthocyanins, phenolic compounds and color of strawberry pulps, and partly inactivated enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.4260 | DOI Listing |
J Mol Model
January 2025
School of Safety Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Context: 3,4-Bis(3-nitrofurazan-4-yl) furoxan (DNTF) is a typical low-melting-point, high-energy-density compound that can serve as a cast carrier explosive. Therefore, understanding the safety of DNTF under different casting processes is of great significance for its efficient application. This study employed molecular dynamics simulations to investigate the effects of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF.
View Article and Find Full Text PDFDalton Trans
January 2025
Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Centre, Sacred Heart College, Tirupattur, affiliated to Thiruvalluvar University, Serkkadu, Tamil Nadu, 635 601, India.
In this study, Zinc Telluride (ZnTe) was subjected to acoustic shock waves with a Mach number of 1.5, transient pressure of 0.59 MPa, and a temperature of 520 K to analyze its stability against shock wave impact.
View Article and Find Full Text PDFCureus
December 2024
Department of Oral and Maxillofacial Surgery, National Hospital Organization, Kyoto Medical Center, Kyoto, JPN.
This study aimed to reproduce a complete wooden plate denture, which was the first in the world to retain suction under negative pressure, using the same materials and methods from 400 years ago (i.e., the Edo period) to verify its masticatory performance.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
Mycophenolic acid (MPA) is a commonly used immunosuppressant. In the human body, MPA is metabolized into mycophenolic acid 7-O-glucuronide (MPAG) and mycophenolic acid acyl-glucuronide (AcMPAG) mainly through liver glucuronidation, which involves UDP-glucuronosyltransferase (UGTs) and transfer proteins. Research has indicated that the pharmaceutical excipient PEG400 can impact drug processes in the body, potentially affecting the pharmacokinetics of MPA.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
Paper-based packaging materials have gained attention from academia and industry for their outstanding environmental sustainability advantages. However, they still encounter major challenges, such as low mechanical strength and inadequate functionality, hindering the replacement of unsustainable packaging materials. Inspired by the remarkable strength of trees provided by cellulose fibers and the water and heat protection of trees provided by bark, this study developed a new biomass-based packaging material (SNC-C) that combines strength, thermal insulation, and water resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!