Molecular dynamics (MD) simulations were carried out to compare the free and bound structures of wild type U1A protein with several Phe56 mutant U1A proteins that bind the target stem loop 2 (SL2) RNA with a range of affinities. The simulations indicate the free U1A protein is more flexible than the U1A-RNA complex for both wild type and Phe56 mutant systems. A complete analysis of the hydrogen-bonding (HB) and non-bonded (VDW) interactions over the course of the MD simulations suggested that changes in the interactions in the free U1A protein caused by the Phe56Ala and Phe56Leu mutations may stabilize the helical character in loop 3, and contribute to the weak binding of these proteins to SL2 RNA. Compared with wild type, changes in HB and VDW interactions in Phe56 mutants of the free U1A protein are global, and include differences in β-sheet, loop 1 and loop 3 interactions. In the U1A-RNA complex, the Phe56Ala mutation leads to a series of differences in interactions that resonate through the complex, while the Phe56Leu and Phe56Trp mutations cause local differences around the site of mutation. The long-range networks of interactions identified in the simulations suggest that direct interactions and dynamic processes in both the free and bound forms contribute to complex stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732173 | PMC |
http://dx.doi.org/10.1002/bip.21616 | DOI Listing |
Biochem Genet
October 2022
Department of Gastrointestinal Surgery, Hubei Xiantao First People's Hospital, Xiantao, Hubei, China.
Circular RNA (circRNA) has been proved to be a key regulator of gastric cancer (GC) progression. Circ_0009910 was found to be highly expressed in GC and related to GC progression, but its role and mechanism in GC progression need to be further improved. Our study aims to further reveal circ_0009910 roles in GC progression and elucidate its potential molecular mechanism.
View Article and Find Full Text PDFSci Rep
July 2021
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.
Methods to spatially induce apoptosis are useful for cancer therapy. To control the induction of apoptosis, methods using light, such as photochemical internalization (PCI), have been developed. We hypothesized that photoinduced delivery of microRNAs (miRNAs) that regulate apoptosis could spatially induce apoptosis.
View Article and Find Full Text PDFFEBS Lett
February 2021
Department of Biological Sciences, BITS Pilani, Zuarinagar, India.
In this report, using the database of RNA-binding protein specificities (RBPDB) and our previously published RNA-seq data, we analyzed the interactions between RNA and RNA-binding proteins to decipher the role of alternative splicing in metabolic disorders induced by TNF-α. We identified 13 395 unique RNA-RBP interactions, including 385 unique RNA motifs and 35 RBPs, some of which (including MBNL-1 and 3, ZFP36, ZRANB2, and SNRPA) are transcriptionally regulated by TNF-α. In addition to some previously reported RBPs, such as RBMX and HuR/ELAVL1, we found a few novel RBPs, such as ZRANB2 and SNRPA, to be involved in the regulation of metabolic syndrome-associated genes that contain an enrichment of tetrameric RNA sequences (AUUU).
View Article and Find Full Text PDFNucleic Acids Res
December 2020
Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
Riboswitches are important gene regulatory elements frequently encountered in bacterial mRNAs. The recently discovered nadA riboswitch contains two similar, tandemly arrayed aptamer domains, with the first domain possessing high affinity for nicotinamide adenine dinucleotide (NAD+). The second domain which comprises the ribosomal binding site in a putative regulatory helix, however, has withdrawn from detection of ligand-induced structural modulation thus far, and therefore, the identity of the cognate ligand and the regulation mechanism have remained unclear.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2020
Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China. Electronic address:
It is well established that U1 snRNP inhibits the cleavage of cryptic polyadenylation site (PAS) within introns, thereby facilitating full-length mRNA transcription for numerous genes in vertebrate cells, yet the underlying mechanism remains poorly understood. Here, by using a model PAS of wdr26 mRNA, we show that U1 snRNP predominantly interferes with the association of PAS with a core 3' processing factor CstF64, which can promote the cleavage step of mRNA 3' processing. Furthermore, we provide evidence that U1A, a component of U1 snRNP, might directly interfere with CstF64 binding on PAS through its RNA binding capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!