Statistical mechanics based topological analysis and island (or cluster) statistics were used to study the hydrogen bond (H-bond) networks in the water-methanol mixtures with the following methanol mole fractions (x(m)): 0.00, 0.10, 0.20, 0.25, 0.28, 0.30, 0.32, 0.36, 0.38, 0.42, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00. NPT-Monte Carlo simulations were performed at room conditions using the TIP5P model potential for water and united-atoms (OPLS) for methanol to generate the H-bond networks. We have found evidence for non-ideal behavior of mixtures with x(m) ≈ 0.3. Several structural and topological properties present strong dependence with the mixture composition. Island statistics indicate a change from the percolated to non-percolate regime at x(m) ≈ 0.5. Statistical analysis of the islands' nature (homo-clusters: same type of molecules × hetero-clusters: two types of molecules) yields a preferential formation of homo-clusters that quantifies the local composition and preferential solvation ("microimmiscibility"). The topology of the hydrogen bond networks was characterized by local (clustering coefficients, average degrees), semi-global (path lengths) and global (spectral densities) properties. Small-world patterns (highly clustered and small path lengths) appear for x(m) in the range 0.40-0.70, and the momenta in the spectral densities correlate quite well with previous analysis based on rings, chains and branched chains topologies. It also seems that small quantities of methanol in water cause disruption of the continuous fully connected H-bond networks formed by water molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cp01802cDOI Listing

Publication Analysis

Top Keywords

hydrogen bond
12
h-bond networks
12
bond networks
8
networks water-methanol
8
water-methanol mixtures
8
path lengths
8
spectral densities
8
networks
5
mixtures topology
4
topology percolation
4

Similar Publications

Two dimensional confinement induced discontinuous chain transitions for augmented electrocaloric cooling.

Nat Commun

January 2025

Department of Polymer Science and Engineering, Key Laboratory of High-Performance Polymer Materials and Technology of MOE, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, China.

Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect.

View Article and Find Full Text PDF

Objective: We compared the protein structure and pathogenicity of clinically relevant variants of the gene with AlphaFold2 (AF2), Alpha Missense (AM), and ThermoMPNN for the first time.

Methods And Analysis: The sequences of clinically relevant Cog4 missense variants (one novel identified p.Y714F and three pre-existing p.

View Article and Find Full Text PDF

Chitosan-pullulan edible coating loaded with dihydromyricetin: Enhanced antioxidant activity and barrier properties to prolong Cantonese sausages shelf-life.

Int J Biol Macromol

January 2025

The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Cantonese sausages are susceptible to oxidative deterioration during storage. Compared with synthetic antioxidants, dihydromyricetin (DMY) is a natural active substance with various functions such as antioxidant and antimicrobial. In this study, edible coating solutions loaded with DMY were prepared based on chitosan (CS) and pullulan (PUL) to prolong the shelf-life of Cantonese sausages.

View Article and Find Full Text PDF

Structural analyses of Cryptosporidium parvum epitopes reveal a novel scheme of decapeptide binding to H-2K.

J Struct Biol

January 2025

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China. Electronic address:

Cryptosporidium has gained much attention as a major cause of diarrhea worldwide. Here, we present the first structure of H-2K complexed with a decapeptide from Cryptosporidium parvum Gp40/15 protein (Gp40/15-VTF10). In contrast to all published structures, the aromatic residue P3-Phe of Gp40/15-VTF10 is anchored in pocket C rather than the canonical Y/F at P5 or P6 reported for octapeptides and nonapeptides.

View Article and Find Full Text PDF

Structural, thermal, and dynamic properties of four deep eutectic solvents comprising choline chloride paired with phenolic derivative hydrogen-bond donors were probed using experiments and molecular simulations. The hydrogen-bond donors include phenol, catechol, -chlorophenol, and o-cresol, in a 3:1 mixture with the hydrogen-bond acceptor choline chloride. Density, viscosity, and pulsed-field gradient NMR diffusivity measurements were conducted over a range of temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!