Variant of the method of Fox and Li dedicated to intracavity laser beam shaping.

J Opt Soc Am A Opt Image Sci Vis

Centre de Recherche sur les Ions, les Matériaux et la Photonique, Unité Mixte de Recherche 6252, Commissariat à l'Énergie Atomique, Centre National de la Recherche Scientifique, École Nationale Supérieure d’Ingénieurs de Caen, Université de Caen, 6 Bd Maréchal Juin, F-14050 Caen Cedex, France

Published: March 2011

AI Article Synopsis

  • The paper introduces a new method for shaping laser beams in resonators using diffractive optics, building on the previous work of Fox and Li.
  • This approach focuses on optimizing the desired output field rather than starting with the optical system, iterating the process until the desired output matches the actual output.
  • The authors demonstrate the technique by creating single cylindrical TEM(p0) modes using a π-phase plate in a plano-concave cavity, confirming its effectiveness through experimental validation and numerical predictions.

Article Abstract

We present a variant of the method of Fox and Li [Bell Syst. Tech. J. 40, 453 (1961); Proc. IEEE 51, 80 (1963)] dedicated to intracavity laser beam shaping for resonators containing an arbitrary number of amplitude and phase diffractive optics. Contrary to Fox and Li, the starting point is the desired field. The latter is injected into the usual sequence of lenses representing just a single round trip, and the optimization process iterates until the input and the output fields match as much as possible. We illustrate this technique by deriving a simple model for generating single cylindrical TEM(p0) modes, thanks to a π-phase plate placed inside a plano-concave cavity. The experimental validation attests an excellent agreement with numerical predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.28.000489DOI Listing

Publication Analysis

Top Keywords

variant method
8
method fox
8
dedicated intracavity
8
intracavity laser
8
laser beam
8
beam shaping
8
fox dedicated
4
shaping variant
4
fox [bell
4
[bell syst
4

Similar Publications

Objective: The effects of sex hormones remain largely unexplored in pheochromocytomas and paragangliomas (PPGLs) and gastroenteropancreatic neuroendocrine tumors (GEP-NETs).

Methods: We evaluated the effects of estradiol, progesterone, Dehydroepiandrosterone sulfate (DHEAS), and testosterone on human patient-derived PPGL/GEP-NET primary culture cell viability (n = 38/n = 12), performed next-generation sequencing and immunohistochemical hormone receptor analysis in patient-derived PPGL tumor tissues (n = 36).

Results: In PPGLs, estradiol and progesterone (1 µm) demonstrated overall significant antitumor effects with the strongest efficacy in PPGLs with NF1 (cluster 2) pathogenic variants.

View Article and Find Full Text PDF

Importance: Enhanced breast cancer screening with magnetic resonance imaging (MRI) is recommended to women with elevated risk of breast cancer, yet uptake of screening remains unclear after genetic testing.

Objective: To evaluate uptake of MRI after genetic results disclosure and counseling.

Design, Setting, And Participants: This multicenter cohort study was conducted at the University of Southern California Norris Cancer Hospital, the Los Angeles General Medical Center, and the Stanford University Cancer Institute.

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

Unveiling the ghost: machine learning's impact on the landscape of virology.

J Gen Virol

January 2025

Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.

The complexity and speed of evolution in viruses with RNA genomes makes predictive identification of variants with epidemic or pandemic potential challenging. In recent years, machine learning has become an increasingly capable technology for addressing this challenge, as advances in methods and computational power have dramatically improved the performance of models and led to their widespread adoption across industries and disciplines. Nascent applications of machine learning technology to virus research have now expanded, providing new tools for handling large-scale datasets and leading to a reshaping of existing workflows for phenotype prediction, phylogenetic analysis, drug discovery and more.

View Article and Find Full Text PDF

East Asia and the Pacific Surveillance Metrics and History of the COVID-19 Pandemic: Updated Epidemiological Assessment.

JMIR Public Health Surveill

January 2025

Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, 420 E. Superior, Chicago, US.

Background: This study updates the COVID-19 pandemic surveillance in East Asia and the Pacific we first conducted in 2020 with two additional years of data for the region.

Objective: First, we measure whether there was an expansion or contraction of the pandemic in East Asia and the Pacific region when the World Health Organization (WHO) declared the end of the COVID-19 public health emergency of international concern on May 5, 2023. Second, we use dynamic and genomic surveillance methods to describe the dynamic history of the pandemic in the region and situate the window of the WHO declaration within the broader history.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!