Maximum a posteriori Bayesian (MAPB) pharmacokinetic parameter estimation is an accurate and flexible method of estimating individual pharmacokinetic parameters using individual blood concentrations and prior information. In the past decade, many studies have developed optimal sampling strategies to estimate pharmacokinetic parameters as accurately as possible using either multiple regression analysis or MAPB estimation. This has been done for many drugs, especially immunosuppressants and anticancer agents. Methods of development for optimal sampling strategies (OSS) are diverse and heterogeneous. This review provides a comprehensive overview of OSS development methodology using MAPB pharmacokinetic parameter estimation, determines the transferability of published OSSs, and compares sampling strategies determined by MAPB estimation and multiple regression analysis. OSS development has the following components: 1) prior distributions; 2) reference value determination; 3) optimal sampling time identification; and 4) validation of the OSS. Published OSSs often lack all data necessary for the OSS to be clinically transferable. MAPB estimation is similar to multiple regression analysis in terms of predictive performance but superior in flexibility.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FTD.0b013e31820f40f8DOI Listing

Publication Analysis

Top Keywords

optimal sampling
16
sampling strategies
12
multiple regression
12
regression analysis
12
mapb estimation
12
development methodology
8
maximum posteriori
8
posteriori bayesian
8
mapb pharmacokinetic
8
pharmacokinetic parameter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!