The TNF-family molecule, Receptor Activator of Nuclear factor κ B Ligand (RANKL) is known as a key regulator for bone remodeling, and is essential for the development and activation of osteoclasts. In this study, we examined the regulation of RANKL in primary human bone marrow adipocytes and the relationship between bone marrow adipocytes and bone metabolism. RANKL expression and the RANKL/osteoprotegerin (OPG) mRNA ratio in marrow adipocytes increased following dexamethasone treatment. In co-cultures of human osteoclast precursors and bone marrow adipocytes with dexamethasone, osteoclast precursors differentiated to TRAP-positive multinuclear cells. Moreover, the ability of bone resorption was confirmed in co-culture in flasks coated with calcium phosphate film. Osteoclast precursor differentiation and bone resorption were blocked by RANKL antibody pretreatment. TRAP-positive multinuclear cells did not form in coculture without cell-to-cell contact conditions. We conclude that primary human bone marrow adipocytes have the ability to promote osteoclast differentiation and activities, similar to osteoblasts and other RANKL-expressing cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2220/biomedres.32.37 | DOI Listing |
Osteoarthritis Cartilage
December 2024
Rheumatology, Department of Musculoskeletal Medicine, University Hospital Lausanne and University of Lausanne (CHUV-UNIL), Lausanne,Switzerland. Electronic address:
Objective: Bone marrow adipose tissue (BMAT) is emerging as an important regulator of bone formation and energy metabolism. Lipolysis of BMAT releases glycerol and fatty acid substrates that are catabolized by osteoblasts. Here, we investigated whether BMAT lipolysis is involved in subchondral bone formation in hand osteoarthritis (OA).
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.
Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.
View Article and Find Full Text PDFHistochem Cell Biol
December 2024
Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Hematopoietic stem cells (HSCs) reside in a milieu that supports their functions, differentiation, and survival. This niche consists of several types of cells, including mesenchymal stem/stromal cells, endothelial cells, osteoblasts, megakaryocytes, macrophages, adipocytes, lymphoid cells, and nerve fibers. The interactions between these cells and HSCs have a role in HSC fate.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
Background: Human platelet lysate (hPL) has emerged as a promising serum substitute to enhance the self-renewal and multipotency of human mesenchymal stem cells (MSCs). Despite its potential, the specific biological mechanisms by which hPL influences MSC phenotypes remain inadequately understood.
Methods: We investigated the biological signaling activated by hPL in two common types of human MSCs: bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs).
Commun Biol
December 2024
Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
Microbial metabolites provide numerous benefits to the human body but can also contribute to diseases such as obesity, diabetes, cancer, and bone disorders. However, the role of imidazole propionate (ImP), a histidine-derived metabolite produced by the intestinal microbiome, in bone metabolism and the development of osteoporosis is still poorly understood. In this study, we investigated the role of ImP and its underlying mechanisms in regulating bone homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!