Novel aspects of transcriptional regulation in the winter survival and maintenance mechanism of poplar.

Tree Physiol

Department of Plant and Environmental New Resources, College of Life Science, Kyung Hee University, Yongin-si, Republic of Korea.

Published: February 2011

Temperate woody plants have developed sophisticated winter survival and maintenance mechanisms that enable them to adapt rapidly to the annual cycle of environmental changes. Here, we demonstrate notable aspects of the transcriptional regulation adopted by poplar in winter/dormancy, employing biochemical and whole transcriptome analysis, and showing high levels of transcriptional activity in a broad spectrum of genes during the dormancy period. A total of 3237 probe sets upregulated more than threefold in winter/dormancy stems over summer/active-growth stems were identified. As expected, genes related to cold hardiness and defense were over-represented. Carbohydrate biosynthesis and transport-related genes were also actively expressed in winter/dormancy stems. Further biochemical analyses verified the dormancy/winter transcription phenotype. More than 60% of the winter upregulated transcription factors (TFs) were related to either biotic or abiotic stress. This finding substantiates that the major transcriptional network of winter/dormancy stems is related to stress tolerance, such as dehydration, cold tolerance and defense. Furthermore, during winter/dormancy, preferential expression of genes involved in cell wall biosynthesis or modification, indirect transcriptional regulation (RNA metabolism) and chromatin modification/remodeling were observed. Taken together, these findings show that regulation of gene expression associated with winter survival and maintenance extends beyond control by promoter-binding TFs to include regulation at the post-transcriptional and chromatin levels.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpq109DOI Listing

Publication Analysis

Top Keywords

transcriptional regulation
12
winter survival
12
survival maintenance
12
winter/dormancy stems
12
aspects transcriptional
8
transcriptional
5
regulation
5
winter/dormancy
5
novel aspects
4
winter
4

Similar Publications

Genome-wide identification and expression analysis of the BBX gene family in Lagerstroemia indica grown under light stress.

Int J Biol Macromol

January 2025

Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China. Electronic address:

B-box proteins (BBX) play pivotal roles in the regulation of numerous growth and developmental processes in plants, particularly the light-mediated biosynthesis of pigments. To elucidate the role of BBX transcription factors in the anthocyanin biosynthetic pathway of Lagerstroemia indica leaves, this study identified 41 BBX genes in the L. indica genome.

View Article and Find Full Text PDF

The potential function of chalcone isomerase (CHI) gene on flavonoid accumulation in Amomum tsao-ko fruit by transcriptome and metabolome.

Int J Biol Macromol

January 2025

Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China. Electronic address:

Flavonoids are the major medicinally active ingredients that exert potential effects in Amomum tsao-ko. In total, 277 flavonoid metabolites were identified in fresh and dried fruits of three different accessions of A. tsao-ko (Amomum tsao-ko), which could be classified into eight classes with more metabolites classified as flavonol.

View Article and Find Full Text PDF

The hidden weavers: A review of DNA/RNA R-loops in stem cell biology and therapeutic potential.

Int J Biol Macromol

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China. Electronic address:

R-loops, three-stranded nucleic acid structures composed of RNA-DNA hybrids, are increasingly recognized as central regulators of genomic stability and transcription. These structures play critical roles across various cellular processes, including DNA replication, repair, and gene regulation, with significant implications for stem cell biology and disease pathogenesis. This review comprehensively explores the molecular underpinnings of R-loop formation, emphasizing the dual nature of R-loops in both facilitating normal cellular functions and contributing to genomic instability.

View Article and Find Full Text PDF

STAT3 Orchestrates Immune Dynamics in Hepatocellular Carcinoma: A Pivotal Nexus in Tumor Progression.

Crit Rev Oncol Hematol

January 2025

Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Hubei, China.

Hepatocellular carcinoma (HCC) presents a formidable challenge in oncology, attributed to its association with chronic liver diseases and global prevalence. The immune microenvironment profoundly influences HCC progression, balancing immune suppression and antitumor responses. The Signal Transducer and Activator of Transcription 3 (STAT3) is central to this equilibrium, orchestrating immune dynamics and intertwining tumor progression with immune evasion mechanisms.

View Article and Find Full Text PDF

Background: Systemic Lupus Erythematosus (SLE) is a typical autoimmune disease characterized by a complex pathogenesis and a strong genetic predisposition. The study of inflammatory response in SLE monocytes is not very clear, and exploring the inflammatory factors of monocytes is beneficial to discover new diagnostic targets.

Results: Using scRNA-seq technology, we obtained the quantitative changes in circulating immune cells and various cellular immune metabolic profiles between SLE patients and healthy volunteers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!