Porphobilinogen synthase (PBGS) is essential for heme biosynthesis, but the enzyme of the protozoan parasite Toxoplasma gondii (TgPBGS) differs from that of its human host in several important respects, including subcellular localization, metal ion dependence, and quaternary structural dynamics. We have solved the crystal structure of TgPBGS, which contains an octamer in the crystallographic asymmetric unit. Crystallized in the presence of substrate, each active site contains one molecule of the product porphobilinogen. Unlike prior structures containing a substrate-derived heterocycle directly bound to an active site zinc ion, the product-bound TgPBGS active site contains neither zinc nor magnesium, placing in question the common notion that all PBGS enzymes require an active site metal ion. Unlike human PBGS, the TgPBGS octamer contains magnesium ions at the intersections between pro-octamer dimers, which are presumed to function in allosteric regulation. TgPBGS includes N- and C-terminal regions that differ considerably from previously solved crystal structures. In particular, the C-terminal extension found in all apicomplexan PBGS enzymes forms an intersubunit β-sheet, stabilizing a pro-octamer dimer and preventing formation of hexamers that can form in human PBGS. The TgPBGS structure suggests strategies for the development of parasite-selective PBGS inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083160PMC
http://dx.doi.org/10.1074/jbc.M111.226225DOI Listing

Publication Analysis

Top Keywords

active site
16
crystal structure
8
toxoplasma gondii
8
porphobilinogen synthase
8
metal ion
8
solved crystal
8
tgpbgs octamer
8
site zinc
8
pbgs enzymes
8
human pbgs
8

Similar Publications

Background: People with malignancy of undefined primary origin (MUO) have a poor prognosis and may undergo a protracted diagnostic workup causing patient distress and high cancer related costs. Not having a primary diagnosis limits timely site-specific treatment and access to precision medicine. There is a need to improve the diagnostic process, and healthcare delivery and support for these patients.

View Article and Find Full Text PDF

Mitral Valve Prolapse Caused by TLL1 Gain-of-Function Mutation.

Can J Cardiol

January 2025

The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel; Genetics Institute, Soroka University Medical Center, Be'er Sheva, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel. Electronic address:

Background: Mitral valve prolapse (MVP) is a common cardiac valvular anomaly that can be caused by mutations in genes of various biological pathways. Individuals of three generations of a kindred presented with apparently dominant heredity of isolated MVP.

Methods: Clinical evaluation and echocardiography for all complying family members (n=13).

View Article and Find Full Text PDF

Objective: To evaluate the transparency and quality of information dissemination among urology residency program websites and provide a checklist. Due to the COVID-19 pandemic, urology residency programs have had to adjust their typical practices, including the adoption of virtual recruiting. Such efforts have included improving program websites, which are often the starting point for potential applicants to obtain information about programs.

View Article and Find Full Text PDF

S-adenosylmethionine (SAM)-dependent histamine N-methyltransferase (HNMT) is a crucial enzyme involved in histamine methylation, playing an important role in the epigenetic modification of biology. It entails the addition of methyl groups to histamine molecules, thereby regulating gene expression, cellular signal transduction, and other biological processes. Therefore, gaining a profound understanding of the detailed mechanism underlying HNMT-mediated methylation reactions is instrumental in elucidating the role of histamine methylation in biology.

View Article and Find Full Text PDF

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!