The grave concern over climate change and new economic incentives such as the clean development mechanism (CDM) have given more weight to the potential of projects for reducing greenhouse gas (GHG) emissions. In the Adjara solid waste management project, even though the need for reductions in GHG emissions is acknowledged, it is not one of the key factors for selecting the most appropriate treatment method. This study addresses the benefit of various solid waste treatment methods that could be used in the Adjara project in terms of reducing GHG emissions. Seven different options for solid waste treatment are examined: open dumping as the baseline case, four options for landfill technology (no provision of landfill gas capture, landfill gas capture with open flare system, with enclosed flare system and with electricity generation), composting and anaerobic digestion with electricity production. CDM methodologies were used to quantify the amount of reductions for the scenarios. The study concludes sanitary landfill with capture and burning of landfill gas by an enclosed flare system could satisfy the requirements, including GHG reduction potential. The findings were tested for uncertainty and sensitivity by varying the data on composition and amount of waste and were found to be robust.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0734242X10396119 | DOI Listing |
J Environ Manage
January 2025
Renewable Energy Lab, College of Engineering, Prince Sultan University, Riyadh, 11586, Saudi Arabia. Electronic address:
Saudi Arabia is one of the largest greenhouse gas (GHG) emitters due to its heavy reliance on fossil fuels, has begun taking proactive steps to address climate change under Vision 2030. The initiative aims to reduce the country's GHG emissions. As part of this effort, the government is transitioning to renewable energy (RE) to decrease its dependency on oil and support sustainable environmental development.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Fired clay bricks (FCBs) are a dominant building material globally due to their low cost and simplicity of production, especially in low- and middle-income countries. With a projected rising housing demand, commensurate growth in brick demand is anticipated, the production of which could result in significant greenhouse gas (GHG) emissions. Robust models are needed to estimate brick demand and emissions to systematically address decarbonization pathways.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Environmental Science & Engineering, Ewha Womans University, South Korea.
A path to carbon neutrality requires the development of refrigeration units that use no refrigerant or emit less greenhouse gas (GHG), such as Thermoelectric coolers (TECs). Using the life cycle inventory assessment (LCIA), the environmental impacts of the manufacturing process of TECs were analyzed, including greenhouse gas emissions, human carcinogenic toxicity (HCT), terrestrial ecotoxicity (TE), freshwater ecotoxicity (FE), mineral resource scarcity (MRS), and fossil resource scarcity (FRS). The alumina plate manufacturing process produces the most GHG emissions because it uses a lot of electricity in the sintering process.
View Article and Find Full Text PDFNat Food
January 2025
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
Rice is a major source of greenhouse gas (GHG) and nitrogen pollution. While best management practices have been developed to enhance the sustainability of rice production under current climates, their adaptability and efficacy under future climate scenarios remain uncertain. Here we evaluated 49 best management practices across global grid cells of rice-producing areas in terms of increasing rice production, reducing GHG emissions and minimizing nitrogen pollution under future climate conditions.
View Article and Find Full Text PDFBMJ Paediatr Open
January 2025
Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
Greenhouse gas (GHG) emissions are creating unprecedented climate-driven extreme weather, with levels of heat and humidity surpassing human physiological tolerance for heat stress. These conditions create a risk of mass casualties, with some populations particularly vulnerable due to physiological, behavioural and socioeconomic conditions (eg, lack of adequate shelter, limited healthcare infrastructure, sparse air conditioning access and electrical grid vulnerabilities). Children, especially young children, are uniquely vulnerable to extreme heat-related morbidity and mortality due to factors including low body mass, high metabolism, suboptimal thermoregulatory mechanisms and behavioural vulnerabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!