Drag reduction by riblets.

Philos Trans A Math Phys Eng Sci

School of Aeronautics, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

Published: April 2011

The interaction of the overlying turbulent flow with riblets, and its impact on their drag reduction properties are analysed. In the so-called viscous regime of vanishing riblet spacing, the drag reduction is proportional to the riblet size, but for larger riblets the proportionality breaks down, and the drag reduction eventually becomes an increase. It is found that the groove cross section A(g)(+) is a better characterization of this breakdown than the riblet spacing, with an optimum A(g)(+1/2) ≈ 11. It is also found that the breakdown is not associated with the lodging of quasi-streamwise vortices inside the riblet grooves, or with the inapplicability of the Stokes hypothesis to the flow along the grooves, but with the appearance of quasi-two-dimensional spanwise vortices below y(+) ≈ 30, with typical streamwise wavelengths λ(x)(+) ≈ 150. They are connected with a Kelvin-Helmholtz-like instability of the mean velocity profile, also found in flows over plant canopies and other surfaces with transpiration. A simplified stability model for the ribbed surface approximately accounts for the scaling of the viscous breakdown with A(g)(+).

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2010.0359DOI Listing

Publication Analysis

Top Keywords

drag reduction
16
riblet spacing
8
drag
4
reduction riblets
4
riblets interaction
4
interaction overlying
4
overlying turbulent
4
turbulent flow
4
flow riblets
4
riblets impact
4

Similar Publications

Hypothesis: We hypothesise that superhydrophobic surfaces can achieve effective interfacial slip and drag reduction even under non-Newtonian, shear-thinning fluid flows. Unlike Newtonian fluids, where slip is primarily influenced by viscosity and surface tension, we anticipate that the shear-thinning nature of these fluids may enhance slip length and drag reduction.

Experiments And Numerical Analysis: The superhydrophobic surfaces used in this study, featuring a dual-scale random topography, were fabricated via a spray coating process, and low-concentration xanthan gum solutions (50-250 ppm) were used as model shear-thinning fluids of low elasticity.

View Article and Find Full Text PDF

The gas (or plastron) trapped between micro/nano-scale surface textures, such as that on superhydrophobic surfaces, is crucial for many engineering applications, including drag reduction, heat and mass transfer enhancement, anti-biofouling, anti-icing, and self-cleaning. However, the longevity of the plastron is significantly affected by gas diffusion, a process where gas molecules slowly diffuse into the ambient liquid. In this work, we demonstrated that plastron longevity could be extended using a gas-soluble and gas-permeable polydimethylsiloxane (PDMS) surface.

View Article and Find Full Text PDF

Superhydrophobic coatings are beneficial for applications like self-cleaning, anti-corrosion, and drag reduction. In this study, we investigated the impact of surface geometry on the static, dynamic, and sliding contact angles in the Cassie-Baxter state. We used fluoro-silane-treated silicon micro-post patterns fabricated via lithography as model surfaces.

View Article and Find Full Text PDF

Many swimmers, especially small- to medium-sized animals, use intermittent locomotion that differs from continuous swimming of large species. This type of locomotion, called burst and coast, is often associated with an energetic advantage. In this work, we investigate the intermittent locomotion inspired by fish locomotion but applied to a propeller.

View Article and Find Full Text PDF

Liquid-solid composites with confined interface behaviors.

Natl Sci Rev

February 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

In the evolving landscape of materials science, the journey from traditional composite materials to liquid-solid composites has marked a significant shift. Composite materials, typically solid state, have long been the cornerstone of many applications due to their structural stability and mechanical properties. However, the emergence of liquid-solid composites has introduced a new paradigm, leveraging the dynamic composite interfaces and fluidic nature of liquids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!