Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We developed and analyzed an inverse numerical model based on Fick's second law on the dynamics of drug release. In contrast to previous models which required two state descriptions of diffusion for long- and short-term release processes, our model is valid for the entire release process. The proposed model may be used for identifying and reducing experimental errors associated with measurements of diffusion based release kinetics. Knowing the initial and boundary conditions, and assuming Fick's second law to be appropriate, we use the methods of Lagrange multiplier along with least-square algorithms to define a cost function which is discretized using finite difference methods and is optimized so as to minimize errors. Our model can describe diffusion based release kinetics for static and dynamic conditions as accurately as finite element methods, but results are obtained in a fraction of CPU time. Our method can be widely used for drug release procedures and for tissue engineering/repair applications where oxygenation of cells residing within a matrix is important.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2011.02.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!