Inflammatory conditions and oxidative stress contribute to the development of atherosclerosis. Nuclear factor E2-related factor 2 (Nrf2) is a redox-sensitive transcription factor known for its antioxidant, anti-inflammatory, and, thus, cell-protective properties. Its role in effecting a deactivated state of oxidized low-density lipoprotein (oxLDL)-generated foam cell macrophages (FCMs), a prevailing cellular phenotype of atherosclerotic lesions, has not been investigated yet. In this study RAW264.7- or mouse peritoneal macrophage-derived FCMs showed reduced mRNA expression of proinflammatory cytokines such as IL-1β and IL-6 and an attenuated production of reactive oxygen species (ROS), as analyzed by hydroethidine in response to lipopolysaccharide (LPS) and compared to LPS-treated control macrophages. In peritoneal FCMs from Nrf2-/- mice (C57BL/6J), the LPS-induced proinflammatory response was restored. OxLDL induced heme oxygenase (HO)-1, which was Nrf2-dependent, and inhibition of HO-1 activity in FCMs using zinc protoporphyrin-IX allowed the cells to regain a proinflammatory phenotype. Mechanistically, oxLDL attenuated ROS-dependent activation of CCAAT/enhancer binding protein (C/EBP) family members in FCMs, thereby reducing cytokine expression. Thus, in FCMs the Nrf2/HO-1 axis intervenes in LPS signaling. ROS production is impaired, C/EBP transactivation is reduced, and consequently the expression of proinflammatory mediators is attenuated, thereby shaping a desensitized FCM phenotype. This macrophage phenotype may be important for the progression of atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.036DOI Listing

Publication Analysis

Top Keywords

foam cell
8
cell macrophages
8
expression proinflammatory
8
fcms
6
antioxidant signaling
4
signaling nrf2
4
nrf2 counteracts
4
counteracts lipopolysaccharide-mediated
4
lipopolysaccharide-mediated inflammatory
4
inflammatory responses
4

Similar Publications

Unique hierarchical NiFe-LDH/Ni/NiCoS heterostructure arrays on nickel foam for the improvement of overall water splitting activity.

Nanoscale

January 2025

Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.

The development of environmentally friendly, high-efficiency, stable, earth-abundant and non-precious metal-based electrocatalysts with fast kinetics and low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of exceeding significance but still challenging. Herein, a bifunctional electrode of unique hierarchical NiFe-LDH/Ni/NiCoS/NF (NiFe-LDH = nickel-iron layered double hydroxide and NF = nickel foam) electrocatalytic architecture, which is built up from NiFe-LDH nanosheets, Ni nanoparticles and NiCoS nanoneedles sequentially arrayed on a porous NF substrate, has been prepared by a facile hydrothermal and electrodeposition method. This electrocatalytic architecture is binder-free and its outer NiFe-LDH nanosheets can effectively prevent the oxidation of inner Ni nanoparticles and corrosion of NiCoS nanoneedles during water electrolysis.

View Article and Find Full Text PDF

Construction of Nanocellulose Aerogels with Environmental Drying Strategy without Organic Solvent Displacement for High-Efficiency Solar Steam Generation.

ACS Nano

January 2025

Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.

Solar desalination is one of the effective means to alleviate water scarcity, in which aerogel-like evaporators have attracted extensive attention in the field of efficient desalination. However, the current preparation methods for aerogels still mainly rely on high-cost solutions, such as freeze-drying or supercritical drying. Herein, a preparation scheme for aerogels that can be realized under atmospheric pressure conditions is reported.

View Article and Find Full Text PDF

Plastics are globally considered a significant threat, particularly to metropolitan areas, due to the extensive use of plastic products. This research is the first of its kind to document microplastics contamination and its effects on Red wettled lapwing (Vanellus indicus). The concentration of microplastics (MPs) was measured from surface water at different locations including canals and drains, which are the primary sources of MPs pollution in the metropolitan city Lahore, Pakistan.

View Article and Find Full Text PDF

Exploring the role of oxidative stress in carotid atherosclerosis: insights from transcriptomic data and single-cell sequencing combined with machine learning.

Biol Direct

January 2025

National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.

Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!