Antimicrobial susceptibility of fecal Escherichia coli isolates in dairy cows following systemic treatment with ceftiofur or penicillin.

Foodborne Pathog Dis

Ambulatory and Production Medicine Clinic, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.

Published: August 2011

The objective of this longitudinal controlled trial was to determine the effect of systemic treatment with ceftiofur on antimicrobial susceptibility of fecal Escherichia coli isolates in dairy cows. Cows with metritis or interdigital necrobacillosis requiring systemic antimicrobial treatment were sequentially assigned to two treatment groups. The first group was treated with ceftiofur hydrochloride and the second with penicillin G procaine. Untreated healthy control cows were selected for sampling on the same schedule as treated cows. Fecal samples were collected on days 0, 2, 7, 14, 21, and 28. In total, 21983 E. coli isolates from 42 cows were analyzed for susceptibility to ampicillin, tetracycline, and ceftiofur using a hydrophobic grid membrane filter system to assess growth on agar containing selected antimicrobial drugs. Temporal changes in both the concentration of E. coli in feces and the susceptibility of E. coli to each drug were analyzed. A significant decrease in the concentration of fecal E. coli on days 2 and 7 post-treatment (but not thereafter) was detected in animals treated with ceftiofur. The proportion of all isolates (95% confidence interval in parentheses) showing reduced susceptibility at day 0 was 3.0% (2.5, 3.6) for ampicillin, 10.6% (9.7, 11.6) for tetracycline, and 4.8% (4.2, 5.6) for ceftiofur; 1.7% (1.3, 2.1) of isolates were resistant to ceftiofur based on growth at 8 μg/mL. Treatment did not have any significant effect on the proportion of isolates expressing reduced susceptibility to antibiotics with the exception of decreased tetracycline susceptibility in the ceftiofur-treated group on day 2. Although we found the potential for selection pressure by documenting the change in E. coli concentration after ceftiofur treatment, an increase in ceftiofur resistance was not found.

Download full-text PDF

Source
http://dx.doi.org/10.1089/fpd.2010.0751DOI Listing

Publication Analysis

Top Keywords

coli isolates
12
ceftiofur
9
antimicrobial susceptibility
8
susceptibility fecal
8
fecal escherichia
8
escherichia coli
8
isolates dairy
8
dairy cows
8
systemic treatment
8
treatment ceftiofur
8

Similar Publications

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.

View Article and Find Full Text PDF

Cases of antibiotic-resistant () infections are becoming increasingly frequent and represent a major threat to our ability to treat cancer patients. The emergence of antimicrobial resistance threatens the treatment of infections. In this study, the antimicrobial profiles, virulent genes, and the frequency of extended-spectrum beta-lactamase (ESBL) gene carriage in fecal isolates from cancer patients at the Laquintinie Hospital in Douala (Cameroon) were determined.

View Article and Find Full Text PDF

Background: We investigated hospitalized carbapenem-resistant Enterobacterales (CRE) and extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) cases with and without COVID-19, as identified through Emerging Infections Program surveillance in 10 sites from 2020 to 2022.

Methods: We defined a CRE case as the first isolation of , complex, , , , or resistant to any carbapenem. We defined an ESBL-E case as the first isolation of , , or resistant to any third-generation cephalosporin and nonresistant to all carbapenems tested.

View Article and Find Full Text PDF

Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in eukaryotes has predominantly relied on the pyrrolysyl-tRNA synthetase/tRNA pair. However, access to additional easily engineered pairs is crucial for expanding the structural diversity of the ncAA toolbox in eukaryotes. The Escherichia coli-derived leucyl-tRNA synthetase (EcLeuRS)/tRNA pair presents a particularly promising alternative.

View Article and Find Full Text PDF

Rare earth elements (REEs) are essential for many clean energy technologies. Yet, they are a limited resource currently obtained through carbon-intensive mining. Here, bio-scaffolded proteins serve as simple, effective materials for the recovery of REEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!