The mechanical properties, water-holding capacities (WHC), and microstructures of emulsion gels, induced by glucono-δ-lactone (GDL), CaCl(2), and microbial transglutaminase (MTGase) from unheated and heated soy protein isolate (SPI)-stabilized emulsions (at protein concentration 5%, w/v; oil volume fraction, 20%, w/v), were investigated and compared. The influence of thermal pretreatments (at 90 °C for 5 min) before and/or after emulsification was evaluated. Considerable differences in mechanical, water-holding, and microstructural properties were observed among various emulsion gels. The thermal pretreatment after emulsification increased the strength of the emulsion gels induced by GDL and CaCl(2), whereas in the case of MTGase, thermal pretreatments before and/or after emulsification on the contrary greatly inhibited gel network formation. The application of the enzyme coagulant exhibited much higher potential to form SPI-stabilized emulsion gels with higher mechanical strength than that of the other two coagulants. The WHC of the emulsion gels seemed to be not directly related to their gel network strength. Confocal laser scanning microscope analyses indicated that the network microstructure of the formed emulsion gels, mainly composed of aggregated protein-stabilized oil droplets and protein aggregate clumps, varied with the type of applied coagulants and emulsions. The differences in microstructure were basically consistent with the differences in mechanical properties of the gels. These results could provide valuable information for the formation of cold-set soy protein-stabilized emulsion gels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf104834m | DOI Listing |
Nat Commun
December 2024
Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
Large-amount encapsulation and subsequent expressing are common characteristics for many biomedical applications, such as cosmetic creams and medical ointments. Emulsion gels can accomplish that, but often undergo exclusive, complex, multiple synthesis steps, showing extremely laborious and non-universal. The method here is simple via precisely interfacial engineering in homogenizing a nanoparticle aqueous dispersion and a polymer oil solution, gaining interfacial 45° three-phase-contact-angle for the nanoparticle that can bridge across oil emulsions' interfaces and ultimately form interconnected macroscopic networks.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou, China.
Background: Pickering emulsions prepared with octenyl succinic anhydride-modified starch (OSAS) show significant promise as replacements for animal fat. However, the underlying mechanism of incorporating an OSAS-based Pickering emulsion into a myofibrillar protein (MP) gel and its impact on the gel properties remain poorly understood. In this study, the effects of OSAS at varying concentrations (0-10.
View Article and Find Full Text PDFGels
December 2024
College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
This study aimed to prepare ultrasonically modified peanut protein-guar gum composite emulsion gels for 3D printing. The composition of the composite emulsion gels was determined in single-factor and orthogonal experiments. The results revealed that the optimal composite emulsion gels consisted of 6% peanut protein, 50% oil and 0.
View Article and Find Full Text PDFGels
December 2024
Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research "Dr. Josif Pančić", Tadeuša Koscuška 1, 11000 Belgrade, Serbia.
Natural deep eutectic solvents (NaDES) were employed for the extraction of bilberry and green tea leaves. This study explored the incorporation of these NaDES extracts into various carrier systems: hydrogels, emulsions, and emulgels stabilized with hydroxyethyl cellulose or xanthan gum. The results demonstrated that, when combined with synthetic UV filters, the NaDES extracts significantly enhanced the SPF and improved the antioxidant properties of the formulation.
View Article and Find Full Text PDFGels
December 2024
Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA.
Oleogels developed through the direct-dispersion method offer an innovative, scalable, and efficient alternative to traditional fats in sausage production, providing a solution to health concerns associated with the high saturated fat content of conventional formulations. By closely mimicking the texture, stability, and mouthfeel of animal fats, these oleogels provide a novel approach to improving the nutritional profile of sausages while maintaining desirable sensory characteristics. This review critically evaluates cutting-edge research on oleogels, emphasizing innovations in their ability to enhance emulsion stability, increase cooking yield, reduce processing weight loss, and optimize fatty acid composition by reducing overall fat and saturated fat levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!