The precipitation of crystals with stoichiometric and ordered arrangements of distinct metal cations often requires carefully designed molecular precursors and/or sufficient activation energy in addition to the necessary mass transport. Here, we study the formation of ordered double perovskite hydroxides, MnSn(OH)(6) and CoSn(OH)(6), of the generic chemical formula, BB'(OH)(6) (no A site), using kinetic control of aqueous hydrolysis from simple metal salt solutions. We find that the precipitation yields ordered compounds only when the B ion is Mn(II) or Co(II), and not when it is any other divalent transition metal ion, or Zn(II). The key step in forming the compounds is the prevention of rapid and uncontrolled hydrolysis of Sn(IV), and this is achieved by a fluoride counteranion. The two compounds, MnSn(OH)(6) and CoSn(OH)(6), are studied by high-resolution synchrotron X-ray diffraction and from the temperature dependence of magnetic behavior. From maximum entropy image restoration of the electron density and from Rietveld analysis, the degree of octahedral distortion and tilting and the small extent of anti-site disorder are determined. From the nonoverlapping electron density, we infer strongly ionic character of bonding. As the first magnetic study of such materials, we report simple paramagnetic behavior with no long-range magnetic order down to 2 K for the Mn(II) compound, while the cobalt compound presents uncompensated antiferromagnetic interactions, attributed to the single-ion anisotropy of octahedral Co(II).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic1025075 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, China.
Solar-driven photocatalytic water splitting offers a sustainable pathway to produce green hydrogen, yet its practical application encounters several challenges including inefficient photocatalysts, sluggish water oxidation, severe reverse reactions and the necessity of separating produced hydrogen and oxygen gases. Herein, we design and develop a photocatalytic system composed of two separate reaction parts: a hydrogen evolution cell containing halide perovskite photocatalysts (MoSe-loaded CH(NH)PbBrI) and an oxygen evolution cell containing NiFe-layered double hydroxide modified BiVO photocatalysts. These components are bridged by a I/I redox couple to facilitate electron transfer, realizing efficient overall water splitting with a solar-to-hydrogen conversion efficiency of 2.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Electrical and Electronic Engineering, International Islamic University Chittagong Kumira Chittagong 4318 Bangladesh
Perovskite solar cells are commonly employed in photovoltaic systems because of their special characteristics. Perovskite solar cells remain efficient, but lead-based absorbers are dangerous, restricting their manufacture. Therefore, studies in the field of perovskite materials are now focusing on investigating lead-free perovskites.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Indian Institute of Technology Jodhpur, Department of Physics, Jodhpur, 342037, India.
The excellent optical and electronic properties of halide perovskite materials have attracted researchers to investigate this particular field. However, the instability in ambient conditions and toxicity of materials like lead have given some setbacks to commercial use. To overcome these issues, perovskite-inspired materials with less toxic and excellent air-stable materials are being studied.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, Hong Kong.
Lead-free halide double perovskites provide a promising solution for the long-standing issues of lead-containing halide perovskites, i.e., the toxicity of Pb and the low stability under ambient conditions and high-intensity illumination.
View Article and Find Full Text PDFCommun Mater
January 2025
Silicon Austria Labs GmbH, Graz, Austria.
Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free BiNaTiO is gaining importance in showing an alternative to lead-based devices. Here we show that ()BiNaTiO - BaZr Ti O (best: 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!