Aim: To study the epidemiological and clinical features of the 2009-2010 pandemic influenza in Russia.
Subjects And Methods: Materials from 874 patients, including postmortem samples from 287 subjects, were examined applying the AmpliSens Influenza virus A/H1-swine-FL PCR kit designed and produced by the Central Research Institute of Epidemiology. The clinical and postmortem characteristics of 68 patients who had died from influenza A/H1N1 (sw2009) were analyzed in detail.
Results: The cause of deaths was primary virus pneumonia in most cases. The major manifestation of viral pathogenicity was impaired microcirculation leading to hemorrhage. No mutations conferring resistance to oseltamivir and arbidol were found. All A/H1N1swl viruses had genetic markers of remantadin resistance.
Conclusion: The reagent kits developed by the Central Research Institute of Epidemiology proved to be effective. It is necessary to set up PCR laboratories that differentially diagnose influenza and acute respiratory viral infections in health care facilities in order to make early laboratory diagnosis of influenza and to timely perform its specific therapy.
Download full-text PDF |
Source |
---|
Food Environ Virol
January 2025
Laboratorio de Ecología Viral y Virus Zoonóticos, Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, 11600, Montevideo, Uruguay.
Human respiratory and enteric viruses are responsible for substantial morbidity and mortality worldwide. Wastewater-based epidemiology utilizing next-generation sequencing serves as an effective tool for monitoring viral circulation dynamics at the community level. However, these complex environmental samples are often laden with other microorganisms and host genomic material, which can hinder the sensitivity of viral detection.
View Article and Find Full Text PDFEur Respir Rev
January 2025
Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid Spain
Background: The morbidity and mortality associated with influenza viruses are a significant public health challenge. Annual vaccination against circulating influenza strains reduces hospitalisations and increases survival rates but requires a yearly redesign of vaccines against prevalent subtypes. The complex genetics of influenza viruses with high antigenic drift create an ongoing challenge in vaccine development to address dynamic influenza epidemiology.
View Article and Find Full Text PDFPLoS One
January 2025
Seqirus S.r.l., Monteriggioni (Siena), Italy.
Objective: In Europe, the age indication for the MF59-adjuvanted quadrivalent influenza vaccine (aQIV) has recently been extended from ≥65 to ≥50 years. Considering that the earliest approval of its trivalent formulation (aTIV) in Italy was for people aged ≥12 years, we aimed to systematically appraise data on the immunogenicity, efficacy, and safety of aTIV/aQIV in non-elderly adults.
Methods: A systematic literature review was conducted according to the available guidelines and studies were searched in MEDLINE, Biological Abstracts, Web of Science, Cochrane Library and clinical trial registries.
Nat Commun
January 2025
School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.
East, South, and Southeast Asia (together referred to as Southeastern Asia hereafter) have been recognized as critical areas fuelling the global circulation of seasonal influenza. However, the seasonal influenza migration network within Southeastern Asia remains unclear, including how pandemic-related disruptions altered this network. We leveraged genetic, epidemiological, and airline travel data between 2007-2023 to characterise the dispersal patterns of influenza A/H3N2 and B/Victoria viruses both out of and within Southeastern Asia, including during perturbations by the 2009 A/H1N1 and COVID-19 pandemics.
View Article and Find Full Text PDFViruses
December 2024
Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134 Florence, Italy.
Background: Understanding the interference patterns of respiratory viruses could be important for shedding light on potential strategies to combat these human infectious agents.
Objective: To investigate the possible interactions between adenovirus type 2 (AdV2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/H1N1 pandemic (H1N1pdm09) using the A549 cell line.
Methods: Single infections, co-infections, and superinfections (at 3 and 24 h after the first virus infection) were performed by varying the multiplicity of infection (MOI).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!