Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cowpea chlorotic mottle virus (CCMV) is a versatile building block for the construction of nanoreactors and functional materials. Upon RNA removal, the capsid can be reversibly assembled and disassembed by adjusting the pH. At pH 5.0 the capsid is in the native assembled conformation, while at pH 7.5 it disassembles into 90 capsid protein dimers. This special property enables the encapsulation of various molecules, such as protein and enzymes, but only at low pH. It is possible to stabilize the capsid at pH 7.5 by addition of negatively charged polyelectrolytes or negatively charged particles, but these methods all fill the interior of the capsid, leaving little or no space for other cargo molecules. This pH restriction therefore severely limits the range of enzymes that can be encapsulated, and hampers the investigation of the CCMV capsid as a nanoreactor for the study of enzymes in confined spaces. Herein, the interaction of N-terminal histidine-tag-modified capsid proteins with several metal ions is reported. Depending on the conditions used, nanometer-sized protein particles or capsidlike architectures are formed that are stable at pH 7.5. This metal-mediated stabilization methodology is employed to form stable capsids containing multiple proteins at pH 7.5, thereby greatly expanding the scope of the CCMV capsid as a nanoreactor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201001777 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!