Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sufficient induction of blood vessel ingrowth decisively influence transplant functionality. In this study, microvascular response to transplants of surface modified bone substitutes were assessed in vivo. The surface modification of allogenic bone substitutes (dehydrated human femoral head) was achieved in a double-conductive low-pressure gasplasma reactor (Ar(2) /O(2) , 13.65 MHz, 1,000 W, 5 Pa). The modified bone substitutes (n = 10) as well as untreated bone substitutes serving as controls (n = 10) were placed into the dorsal skinfold chamber of female balb/c mice (n = 10). Dynamic assessment of microcirculatory parameters was performed using intravital fluorescence microscopy during an implantation period of 10 days. The angiogenic response was found markedly accelerated in gasplasma-treated bone. Compared to untreated implants, the gasplasma-activated bone substitutes showed significantly higher microvascular density on days 5 and 10. The quantification of the microvascular diameters, red blood cell velocity, and microvascular permeability displayed stable perfusion and vascular integrity of the newly developed blood vessels throughout the 10-day observation period. The surface activation via cold low-pressure glow discharge gasplasma supports the vascular integration of allogenic bone by earlier induction of the angiogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.21358 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!