The aim of the study was to elucidate the effect of unloading and reloading on the collagen expression and synthesis rate of myofibrillar proteins in fast-twitch (FT) muscle in relation to changes in muscle strength and motor activity. Northern blot analysis was used for testing the specificity of cDNA probes and protein synthesis rate was measured according to incorporation of radioactive leucine into different protein fractions. Unloading depresses collagen type I and III (p<0.001), type IV (p<0.05) and reloading enhances collagen expression in fast-twitch skeletal muscle in comparison with unloading. Enhanced expression of matrix metalloproteinase-2 continued during the first week of reloading (p<0.01) and tissue inhibitor of metalloproteinase-2 during reloading (p<0.05). Changes in collagen expression in FT muscle are in good agreement with changes in myofibrillar protein synthesis during unloading and reloading. In conclusion alterations in extracellular matrix and myofibrillar apparatus in FT skeletal muscle are related to changes in muscle strength and motor activity, are significant in exercise training and determination of recovery periods in the training process as well as in athletes' rehabilitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0030-1270513 | DOI Listing |
Sci Rep
January 2025
School of Civil Engineering, Hubei Engineering University, Xiaogan, 432000, Hubei, China.
Calcareous sand is a widely used foundation material in marine engineering. Particle breakage can lead to an increase in its compressibility, affecting the safety and stability of structures. The compression characteristics and particle breakage effects of calcareous sand were analyzed through 33 sets of confined compression tests using calcareous sand specimens.
View Article and Find Full Text PDFIn Vivo
December 2024
Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan;
Background/aim: Lactate is a physiologically active substance secreted by skeletal muscle that has been suggested to stimulate muscle mass gain. However, the molecular mechanism for lactate-associated muscle hypertrophy remains unclear. The purpose of the present study was to investigate whether oral administration of lactate increases muscle mass under different loading conditions.
View Article and Find Full Text PDFSci Adv
December 2024
McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary T2N 4Z6, Canada.
Mechanical unloading causes bone loss, but it remains unclear whether disuse-induced changes to bone microstructure are permanent or can be recovered upon reloading. We examined bone loss and recovery in 17 astronauts using time-lapsed high-resolution peripheral quantitative computed tomography and biochemical markers to determine whether disuse-induced changes are permanent. During 6 months in microgravity, resorption was threefold higher than formation.
View Article and Find Full Text PDFPLoS One
December 2024
School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, China.
Understanding he impact of dry-wet and freeze-thaw cycles on the mechanical properties of unloaded damaged rock masses in reservoir bank slopes is crucial for revealing the deformation and failure mechanisms in artificially excavated slope rock masses within fluctuation zones. To address, the study focuses on unloaded damaged samples subjected to excavation disturbances, conducting various cycles of dry-wet and freeze-thaw treatment along with uniaxial and triaxial re-loading tests. A damage statistical constitutive model was established based on the experimental results and validated using numerical simulation methods.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
Osteoporosis is the most prevalent metabolic bone disease, especially when aggravated by aging and long-term bed rest of various causes and also when coupled with astronauts' longer missions in space. Research on the use of static magnetic fields (SMFs) has been progressing as a noninvasive method for osteoporosis due to the complexity of the disease, the inconsistency of the effects of SMFs, and the ambiguity of the mechanism. This paper studied the effects of mice subjected to hindlimb unloading (UL, HLU) and reloading by the 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!