Genetically engineered bacteria-based sensing systems have been employed in a variety of analyses because of their selectivity, sensitivity, and ease of use. These systems, however, have found limited applications in the field because of the inability of bacteria to survive long term, especially under extreme environmental conditions. In nature, certain bacteria, such as those from Clostridium and Bacillus genera, when exposed to threatening environmental conditions are capable of cocooning themselves into a vegetative state known as spores. To overcome the aforementioned limitation of bacterial sensing systems, the use of microorganisms capable of sporulation has recently been proposed. The ability of spores to endow bacteria-based sensing systems with long lives, along with their ability to cycle between the vegetative spore state and the germinated living cell, contributes to their attractiveness as vehicles for cell-based biosensors. An additional application where spores have shown promise is in surface display systems. In that regard, spores expressing certain enzymes, proteins, or peptides on their surface have been presented as a stable, simple, and safe new tool for the biospecific recognition of target analytes, the biocatalytic production of chemicals, and the delivery of biomolecules of pharmaceutical relevance. This review focuses on the application of spores as a packaging method for whole-cell biosensors, surface display of recombinant proteins on spores for bioanalytical and biotechnological applications, and the use of spores as vehicles for vaccines and therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-011-4835-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!