Nuclear factor-κB is involved in the phenotype loss of parvalbumin-interneurons in vitro.

Neuroreport

Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, PR China.

Published: April 2011

The phenotype loss of parvalbumin-containing interneurons, characterized by decreased parvalbumin expression, has been observed in schizophrenic patients. Overproduction of intraneuronal reactive oxygen species leads to such a phenotype loss. Nuclear factor-κB (NF-κB) activation is both a target and a regulator of intracellular oxidative stress response, suggesting its involvement in the parvalbumin regulation. This study was carried out to investigate the role of the NF-κB activation in the ketamine-induced phenotype loss of parvalbumin-interneurons in vitro. Ketamine was applied to primary neuronal cultures to successfully evoke the production of increased reactive oxygen species and decreased parvalbumin expression in parvalbumin-interneurons, which was invalid in the presence of a NF-κB inhibitor, SN50 or Bay11-7082. These results suggest potential links among NF-κB activation, oxidative stress, and parvalbumin-interneurons in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0b013e3283451787DOI Listing

Publication Analysis

Top Keywords

phenotype loss
16
parvalbumin-interneurons vitro
12
nf-κb activation
12
nuclear factor-κb
8
loss parvalbumin-interneurons
8
decreased parvalbumin
8
parvalbumin expression
8
reactive oxygen
8
oxygen species
8
oxidative stress
8

Similar Publications

Biallelic pathogenic variants in the nebulin ( ) gene lead to the congenital muscle disease nemaline myopathy. In-frame deletion of exon 55 (ΔExon55) is the most common disease-causing variant in . Previously, a mouse model of was developed; however, it presented an uncharacteristically severe phenotype with a near complete reduction in transcript expression that is not observed in exon 55 patients.

View Article and Find Full Text PDF

The advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms.

View Article and Find Full Text PDF

Background: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function variants. encodes K 11.1 that forms a delayed-rectifier potassium channel in the brain and heart.

View Article and Find Full Text PDF

Genetic studies on the protist, provide a glimpse into the unexpectedly rich world of intracellular patterning that unfolds within the ciliate cell cortex. Ciliate pattern studies provide a useful counterpoint to animal models of pattern formation in that the unicellular model draws attention away from fields of cells (or nuclei) as the principal players in the metazoan pattern paradigm, focusing instead on fields of ciliated basal bodies serving as sources of positional information. In this study, we identify , a Polo kinase of , that serves as an important factor driving global, circumferential pattern.

View Article and Find Full Text PDF

Enteroendocrine cells (EECs) are a rare cell type of the intestinal epithelium. Various subtypes of EECs produce distinct repertoires of monoamines and neuropeptides which modulate intestinal motility and other physiologies. EECs also possess neuron-like properties, suggesting a potential vulnerability to ingested environmental neurotoxicants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!