Rapid binding and release of Hfq from ternary complexes during RNA annealing.

Nucleic Acids Res

Program in Cellular, Molecular and Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.

Published: July 2011

The Sm protein Hfq binds small non-coding RNA (sRNAs) in bacteria and facilitates their base pairing with mRNA targets. Molecular beacons and a 16 nt RNA derived from the Hfq binding site in DsrA sRNA were used to investigate how Hfq accelerates base pairing between complementary strands of RNA. Stopped-flow fluorescence experiments showed that annealing became faster with Hfq concentration but was impaired by mutations in RNA binding sites on either face of the Hfq ring or by competition with excess RNA substrate. A fast bimolecular Hfq binding step (∼10(8) M(-1)s(-1)) observed with Cy3-Hfq was followed by a slow transition (0.5 s(-1)) to a stable Hfq-RNA complex that exchanges RNA ligands more slowly. Release of Hfq upon addition of complementary RNA was faster than duplex formation, suggesting that the nucleic acid strands dissociate from Hfq before base pairing is complete. A working model is presented in which rapid co-binding and release of two RNA strands from the Hfq ternary complex accelerates helix initiation 10 000 times above the Hfq-independent rate. Thus, Hfq acts to overcome barriers to helix initiation, but the net reaction flux depends on how tightly Hfq binds the reactants and products and the potential for unproductive binding interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130257PMC
http://dx.doi.org/10.1093/nar/gkr062DOI Listing

Publication Analysis

Top Keywords

hfq
12
base pairing
12
rna
9
release hfq
8
hfq ternary
8
hfq binds
8
hfq binding
8
helix initiation
8
rapid binding
4
binding release
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!