It is generally accepted that hydrogenosomes (hydrogen-producing organelles) evolved from a mitochondrial ancestor. However, until recently, only indirect evidence for this hypothesis was available. Here, we present the almost complete genome of the hydrogen-producing mitochondrion of the anaerobic ciliate Nyctotherus ovalis and show that, except for the notable absence of genes encoding electron transport chain components of Complexes III, IV, and V, it has a gene content similar to the mitochondrial genomes of aerobic ciliates. Analysis of the genome of the hydrogen-producing mitochondrion, in combination with that of more than 9,000 genomic DNA and cDNA sequences, allows a preliminary reconstruction of the organellar metabolism. The sequence data indicate that N. ovalis possesses hydrogen-producing mitochondria that have a truncated, two step (Complex I and II) electron transport chain that uses fumarate as electron acceptor. In addition, components of an extensive protein network for the metabolism of amino acids, defense against oxidative stress, mitochondrial protein synthesis, mitochondrial protein import and processing, and transport of metabolites across the mitochondrial membrane were identified. Genes for MPV17 and ACN9, two hypothetical proteins linked to mitochondrial disease in humans, were also found. The inferred metabolism is remarkably similar to the organellar metabolism of the phylogenetically distant anaerobic Stramenopile Blastocystis. Notably, the Blastocystis organelle and that of the related flagellate Proteromonas lacertae also lack genes encoding components of Complexes III, IV, and V. Thus, our data show that the hydrogenosomes of N. ovalis are highly specialized hydrogen-producing mitochondria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144386 | PMC |
http://dx.doi.org/10.1093/molbev/msr059 | DOI Listing |
Med Gas Res
December 2022
MiZ Company Limited, Kamakura, Kanagawa, Japan; MiZ Inc., Newark, CA, USA, Japan.
Intestinal bacteria can be classified into "beneficial bacteria" and "harmful bacteria." However, it is difficult to explain the mechanisms that make "beneficial bacteria" truly beneficial to human health. This issue can be addressed by focusing on hydrogen-producing bacteria in the intestines.
View Article and Find Full Text PDFJ Eukaryot Microbiol
November 2022
Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
This review is dedicated to the 50th anniversary of the discovery of hydrogenosomes by Miklós Müller and Donald Lindmark, which we will celebrate the following year. It was a long journey from the first observation of enigmatic rows of granules in trichomonads at the end of the 19th century to their first biochemical characterization in 1973. The key experiments by Müller and Lindmark revealed that the isolated granules contain hydrogen-producing hydrogenase, similar to some anaerobic bacteria-a discovery that gave birth to the field of hydrogenosomes.
View Article and Find Full Text PDFPLoS One
October 2020
Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
Some organisms, like Trichomonas vaginalis, contain mitochondria-related hydrogen-producing organelles, called hydrogenosomes. The protein targeting into these organelles is proposed to be similar to the well-studied mitochondria import. Indeed, S.
View Article and Find Full Text PDFNat Microbiol
May 2020
Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France.
The discovery of Asgard archaea, phylogenetically closer to eukaryotes than other archaea, together with improved knowledge of microbial ecology, impose new constraints on emerging models for the origin of the eukaryotic cell (eukaryogenesis). Long-held views are metamorphosing in favour of symbiogenetic models based on metabolic interactions between archaea and bacteria. These include the classical Searcy's and Hydrogen hypothesis, and the more recent Reverse Flow and Entangle-Engulf-Endogenize models.
View Article and Find Full Text PDFNutrients
December 2019
Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
Obesity and metabolic syndrome (MS) associated with excess calorie intake has become a great public health concern worldwide. L-arabinose, a naturally occurring plant pentose, has a promising future as a novel food ingredient with benefits in MS; yet the mechanisms remain to be further elucidated. Gut microbiota is recently recognized to play key roles in MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!