The genes encoding the cellulases Cel5A, Cel8C, Cel9E, Cel48F, Cel9G, and Cel9M from Clostridium cellulolyticum were cloned in the C. acetobutylicum expression vector pSOS952 under the control of a Gram-positive constitutive promoter. The DNA encoding the native leader peptide of the heterologous cellulases was maintained. The transformation of the solventogenic bacterium with the corresponding vectors generated clones in the cases of Cel5A, Cel8C, and Cel9M. Analyses of the recombinant strains indicated that the three cellulases are secreted in an active form to the medium. A large fraction of the secreted cellulases, however, lost the C-terminal dockerin module. In contrast, with the plasmids pSOS952-cel9E, pSOS952-cel48F, and pSOS952-cel9G no colonies were obtained, suggesting that the expression of these genes has an inhibitory effect on growth. The deletion of the DNA encoding the leader peptide of Cel48F in pSOS952-cel48F, however, generated strains of C. acetobutylicum in which mature Cel48F accumulates in the cytoplasm. Thus, the growth inhibition observed when the wild-type cel48F gene is expressed seems related to the secretion of the cellulase. The weakening of the promoter, the coexpression of miniscaffoldin-encoding genes, or the replacement of the native signal sequence of Cel48F by that of secreted heterologous or endogenous proteins failed to generate strains secreting Cel48F. Taken together, our data suggest that a specific chaperone(s) involved in the secretion of the key family 48 cellulase, and probably Cel9G and Cel9E, is missing or insufficiently synthesized in C. acetobutylicum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126403 | PMC |
http://dx.doi.org/10.1128/AEM.03012-10 | DOI Listing |
Protein Sci
April 2024
CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
Cellulosomes are intricate cellulose-degrading multi-enzymatic complexes produced by anaerobic bacteria, which are valuable for bioenergy development and biotechnology. Cellulosome assembly relies on the selective interaction between cohesin modules in structural scaffolding proteins (scaffoldins) and dockerin modules in enzymes. Although the number of tandem cohesins in the scaffoldins is believed to determine the complexity of the cellulosomes, tandem dockerins also exist, albeit very rare, in some cellulosomal components whose assembly and functional roles are currently unclear.
View Article and Find Full Text PDFChemosphere
November 2023
Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China. Electronic address:
Phytoremediation is an economic way to attenuate soil heavy metal pollution, but is frequently limited by its low pollutant-removing efficiency. Recently, we revealed the close relation between polysaccharide-based biofilm formation and cadmium removal. In this study, for improving the phytoremediation efficiency, an artificial polysaccharide-binding protein was designed by synthetic biology techniques to regulate biofilm formation.
View Article and Find Full Text PDFMicroorganisms
July 2023
Aix Marseille Univ, CNRS, LCB, Marseille, France.
Bioresour Technol
May 2023
Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. Electronic address:
The bacteria Clostridium cellulolyticum is a promising candidate for consolidated bioprocessing (CBP). However, genetic engineering is necessary to improve this organism's cellulose degradation and bioconversion efficiencies to meet standard industrial requirements. In this study, CRISPR-Cas9n was used to integrate an efficient β-glucosidase into the genome of C.
View Article and Find Full Text PDFJ Agric Food Chem
December 2022
Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
d-Allulose, a rare sugar and functional sweetener, can be biosynthesized by d-allulose 3-isomerase (DAE). However, most of the reported DAEs exhibit poor resistance under acidic conditions, which severely limited their application. Here, surface charge engineering and random mutagenesis were used to construct a mutant library of CcDAE from H10, combined with high-throughput screening to identify mutants with high activity and resistance under acidic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!