Banded garden spiders (Argiope trifasciata) were collected at the Ballona Wetlands, a metal contaminated salt marsh. The relationship between spider body size and individual metal loads was investigated. Biochemical markers were identified in spider fecal material and found to correlate to body metal levels. Body metal dry weight concentrations of Cd, Cr, Cu, Zn and total metals in female A. trifasciata exhibited distinct patterns of spatial and annual variation during 2006 and 2007. Spider body size was homogeneous across sites in both years, while increased Cd and Cr concentrations were sometimes associated with a reduction in spider size, though the influence of Cr was quite minor. Spiders with higher body Cu levels showed a reduction in peak area for hypoxanthine and an un-identified component in fecal material chromatograms. Spatial and annual differences in metal bioaccumulation are likely mediated by variation in site-specific environmental parameters and rainfall, while the negative relationships between body size and metal levels are presumably a consequence of a spider's expenditure of energy for metal tolerance mechanisms vs. foraging and growth. Finally, correlating body metal levels with excreta products constitutes a novel method to non-invasively predict metal levels in spiders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2011.02.003 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.
View Article and Find Full Text PDFPLoS One
January 2025
School of Applied Sciences, University of West of England, Bristol, United Kingdom.
Knowledge of plant growth dynamics is essential where constraints such as COVID-19 lockdown restrictions have limited its field establishment. Thus, modeling can be used to predict plant performance where field planting/monitoring cannot be achieved. This study was conducted on the growth dynamics of rubber planted on two acid soils treated with either dolomitic limestone (GML), kieserite or Mg-rich synthetic gypsum (MRSG) to supply the Mg required by rubber seedlings.
View Article and Find Full Text PDFHum Cell
January 2025
Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, People's Republic of China.
Hepatocellular carcinoma (HCC) is a primary malignant neoplasm exhibiting a high mortality rate. Taxifolin is a naturally occurring flavonoid compound that exhibits a range of pharmacological properties. The effects of taxifolin on HCC remain largely unexplored.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Applied Science Department, The NorthCap University, 122017, Gurugram, Haryana, India.
For the first time, a TiCT-MXene and poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) composite-modified electrode has been developed for electrochemical detection of the bilirubin (BR) by molecularly imprinted ortho-phenylenediamine (o-PD). BR is a biomarker for liver-related diseases. High levels of BR imply liver dysfunction; hence, its exact and rapid measurement is indispensable to its immediate diagnosis and treatment.
View Article and Find Full Text PDFArch Environ Contam Toxicol
January 2025
College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, People's Republic of China.
The investigation focused on Tl, Hg, As, and Sb as the targeted contaminants in the soil surrounding a thallium mining region in southwestern China. Potential sources of toxic elements were identified using correlation analysis and principal component analysis. By interpreting the results of correlation and principal component analysis, the potential sources of Tl, Hg, As, and Sb were identified to include the mining and smelting industry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!