The goal of this study was to investigate the efflux of K(+) from human corneal limbal epithelial cells (HCLE) exposed to ambient levels of UVB, which is known to cause apoptosis, and to examine the effect of K(+) channel blockers on loss of potassium induced by UVB. HCLE cells were exposed to 100-200 mJ/cm(2) UVB, followed by incubation in culture media with 5.5-100 mM K(+), BDS-1, Ba(2+) or ouabain. To measure intracellular cations, cells were washed in 280 mM sucrose and lysed in DI water. K(+) and Na(+) levels in lysates were measured by ion chromatography. HCLE cells showed maximal loss of K(+)(i) 10 min after exposure to UVB and 5.5 mM K(+) media, with recovery of normal K(+) levels after 90 min. Treatment with 1 μM BDS-1 following UVB exposure reduced the loss of K(+) by HCLE cells. Exposure to 0.1-5 mM Ba(2+) inhibited UVB-induced K(+) loss in a time and dose-dependent manner. These results confirm that blocking K(+) channels in HCLE cells exposed to UVB prevents efflux of K(+), confirming that UVB activates K(+) channels in these cells. Electrophysiology data show that K(+) channels remain highly active at least 90 min after UVB exposure. HCLE cells exposed to UVB and incubated in 0.01-1 μM ouabain did not recover from UVB-induced K(+) loss. These data suggest that the Na/K pump may act to restore [K(+)](i) to control levels in HCLE cells following UVB exposure and that the pump is not damaged by exposure to UVB. Incubation of HCLE cells exposed to UVB in medium with 25-100 mM K(+) media prevented K(+) efflux at extracellular concentrations as low as 25 mM (the concentration in tear fluid), maintaining control levels of K(+)(i). In all experiments inward fluxes and intracellular Na(+) levels mirrored K(+) changes, albeit at the expected lower concentrations. The prevention of UVB-induced K(i)(+) loss by 25 mM K(o)(+) is consistent with the possible contribution of the relatively high K(+) concentration in tears to protection of the corneal epithelium from ambient UVB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3081982 | PMC |
http://dx.doi.org/10.1016/j.exer.2011.02.019 | DOI Listing |
Cells
December 2024
Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA.
Mustard gas keratopathy (MGK), a complication of exposure to sulfur mustard, is a blinding ocular surface disease involving key cellular pathways, including apoptosis, oxidative stress, and inflammation. Recent studies indicate that cellular senescence contributes to the pathophysiology of mustard gas toxicity. This study aimed to assess senescence and stress-related pathways-particularly mitogen-activated protein kinase (MAPK) signaling-in nitrogen mustard (NM)-induced corneal injury.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
November 2024
Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States.
Purpose: The intraepithelial corneal nerves (ICNs) innervating the cornea are essential to corneal epithelial cell homeostasis. Rho-associated kinase (ROCK) inhibitors (RIs) have been reported to play roles in neuron survival after injury and in mitochondrial transfer between corneal epithelial cells. In this study, the mechanisms human corneal limbal epithelial (HCLE) cells use to control intercellular mitochondrial transfer are assessed.
View Article and Find Full Text PDFTransl Vis Sci Technol
June 2024
Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
Purpose: Recombinant human nerve growth factor (rhNGF; cenegermin-bkbj, OXERVATE) is the first and only U.S. Food and Drug Administration-approved treatment for moderate to severe neurotrophic keratopathy.
View Article and Find Full Text PDFInt J Biol Macromol
June 2024
Silk Technologies Limited, Minneapolis, MN 55402, United States.
Fibroin is a structural protein derived from silk cocoons, which may be used in a variety of biomedical applications due to its high biocompatibility and controllable material properties. Conversely, fibroin solution is inherently unstable in solution, which limits its potential utility. Fibroin hydrolysates possess enhanced aqueous solubility and stability, with known anti-inflammatory bioactivity.
View Article and Find Full Text PDFPharmaceutics
May 2023
Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!