The peptide sequence (175-192) RFPFHRCGAGPKLTKDLE (P59) of the E2 envelope protein of GB virus C (GBV-C) has been proved to decrease cellular membrane fusion and interfere with the HIV-1 infectivity in a dose-dependent manner. Based on these previous results, the main objective of this study was to deepen in the physicochemical aspects involved in this interaction. First, we analyzed the surface activity of P59 at the air-water interface as well as its interaction with zwitterionic or negatively charged lipid monolayers. Then we performed the same experiments with mixtures of P59/gp41-FP. Studies on lipid monolayers helped us to understand the lipid-peptide interaction and the influence of phospholipids on peptide penetration into lipid media. On another hand, studies with lipid bilayers showed that P59 decreased gp41-FP binding to anionic Large Unilamellar Vesicles. Results can be attributed to the differences in morphology of the peptides, as observed by Atomic Force Microscopy. When P59 and gp41-FP were incubated together, annular structures of about 200 nm in diameter appeared on the mica surface, thus indicating a peptide-peptide interaction. All these results confirm the gp41-FP-P59 interaction and thus support the hypothesis that gp41-FP is inhibited by P59.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2011.02.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!