Objective: The basic fibroblast growth factor (bFGF) has a very short half-life in vivo, and this limits its therapeutic value for frequent administration. Liposome technology was used to improve the stability of bFGF and to prolong its effects in vivo.
Methods: bFGF-encapsulated liposomes (bFGF-lip) were prepared using the pH gradient method. Four critical factors were investigated including concentration of citric acid solution, incubation time of blank liposomes, incubation temperature and sonication time. The pharmacodynamics of bFGF-lip was investigated by establishing a deep second-degree burns model in rats.
Results: The optimal bFGF-lip were characterised by high entrapment efficiency (79.88 ± 3.37%), good physical stability (K(E): 1.02 ± 0.413%) and high bioactivity ((6.147 ± 0.769) × 10(5) IU ml(-1)). The middle dose of bFGF-lip (60 IU ml(-1)) demonstrated the fastest tissue collagen generation as well as the earliest and highest tumour growth factor (TGF)-β1 and dermal cell proliferation (proliferating cell nuclear antigen (PCNA)) expression as compared with other treatments.
Conclusion: Results of the present study imply that bFGF-lip have promising prospects for application in wound-healing therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.burns.2011.01.018 | DOI Listing |
Colloids Surf B Biointerfaces
September 2024
Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China; Haikou Key Laboratory of Clinical Research and Transformation of Digestive Diseases, Haikou 570208, China. Electronic address:
Bile duct injury presents a significant clinical challenge following hepatobiliary surgery, necessitating advancements in the repair of damaged bile ducts is a persistent issue in biliary surgery. 3D printed tubular scaffolds have emerged as a promising approach for the repair of ductal tissues, yet the development of scaffolds that balance exceptional mechanical properties with biocompatibility remains an ongoing challenge. This study introduces a novel, bio-fabricated bilayer bile duct scaffold using a 3D printing technique.
View Article and Find Full Text PDFBurns
August 2011
Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, People's Republic of China.
Objective: The basic fibroblast growth factor (bFGF) has a very short half-life in vivo, and this limits its therapeutic value for frequent administration. Liposome technology was used to improve the stability of bFGF and to prolong its effects in vivo.
Methods: bFGF-encapsulated liposomes (bFGF-lip) were prepared using the pH gradient method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!