Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The classical salicylaldehyde dehydrogenases found in naphthalene-degrading bacteria are denoted as NahF. In addition to NahF, NahV, and its corresponding gene nahV, were found here in multiple naphthalene-degrading bacteria isolated from industrial wastewater polluted with polycyclic aromatic hydrocarbons (PAHs). In this study, we described for the first time the biological function and regulation model of NahV for the mineralization of naphthalene by P. putida ND6 via the construction of nahF-, nahV- and regulatory gene nahR-deficient strains. The two mutants of salicylaldehyde dehydrogenase genes and wild-type Pseudomonas ND6 were compared with respect to growth rate, naphthalene degradation efficiency, protein expression level, and salicylaldehyde dehydrogenase activity. The data showed that the presence of NahV conferred a physiological advantage on P. putida ND6 for the catabolism of naphthalene in the presence of NahF. NahV could facilitate naphthalene degradation by increasing total salicylaldehyde dehydrogenase activity when both dehydrogenases are present and it could replace the function of NahF when nahF gene is deleted or mutated, thus ensuring mutants could survive in naphthalene-containing environments. To investigate regulation model of NahV, we detected the expression levels and salicylaldehyde dehydrogenase activity in the wild-type and the nahR mutant strains following cultivation in the presence of glucose±salicylate. The data demonstrated that just like the classical salicylaldehyde dehydrogenases, NahF, NahV was induced by salicylate in the presence of NahR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2011.01.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!