Gelatinase B/matrix metalloproteinase-9 (MMP-9) is a key enzyme involved in inflammatory, hematological, vascular and neoplastic diseases. In previous studies, we explored the intracellular substrate set or 'degradome' of MMP-9 and found many systemic autoantigens as novel intracellular gelatinase B substrates. Little is known, however, about the functional role of MMP-9 in the development of systemic autoimmunity in vivo. B6(lpr/lpr) mice with defective Fas-mediated apoptosis were used to investigate the functions of MMP-9 in lymphocyte proliferation and in the development of systemic autoimmunity. Combined Fas and gelatinase B deficiency resulted in extreme lymphoproliferative disease with enhanced lymphadenopathy and splenomegaly, and significantly reduced survival compared with single Fas deficiency. At the cellular level, this was corroborated by increased lymph node accumulation of 'double negative' T cells, B cells and myeloid cells. In addition, higher autoantibody titers and more pronounced autoimmune tissue injury were found in the absence of MMP-9, culminating in chronically enhanced systemic lupus erythematosus (SLE)-like autoimmunity. After cleavage by MMP-9 the SLE autoantigens U1snRNP A and ribosomal protein P0 were hardly recognized by plasma samples of both B6(lpr/lpr).MMP-9⁻/⁻ and B6(lpr/lpr).MMP-9+/+ mice, pointing to a destruction of B cell epitopes by MMP-9-mediated proteolysis. In addition, the same loss of immunodominant epitopes was observed with plasma samples from SLE patients, suggesting that MMP-9 suppresses systemic antibody-mediated autoimmunity by clearance of autoepitopes in immunogenic substrates. Thus, new protective functions for MMP-9 were revealed in the suppression of lymphoproliferation and dampening of systemic autoimmunity, cautioning against the long-term use of MMP inhibitors in autoimmune lymphoproliferative syndrome (ALPS) and SLE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaut.2011.02.002DOI Listing

Publication Analysis

Top Keywords

systemic autoimmunity
12
mmp-9
8
development systemic
8
functions mmp-9
8
plasma samples
8
systemic
7
autoimmunity
5
deficiency gelatinase
4
gelatinase b/mmp-9
4
b/mmp-9 aggravates
4

Similar Publications

Hemophagocytic lymphohistiocytosis (HLH), is a fatal systemic hyperinflammatory syndrome. HLH may be due to immunosuppression, infections, cancer, or autoimmune diseases with fever and cytopenia. HLH which occurs in adult-onset Stills disease (AOSD) is called secondary HLH, also known as macrophage activation syndrome (MAS).

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic, chronic autoimmune disease. Many studies have shown that microorganisms may be an important pathological factor leading to the onset of RA. Some infectious or non-infectious pathogenic microorganisms and their metabolites may be the initiating factors of the early onset of RA.

View Article and Find Full Text PDF

Background: Sjogren syndrome (SS) is a chronic systemic autoimmune disease and its pathogenesis often involves the participation of numerous immune cells and inflammatory factors. Despite increased researches and studies recently focusing on this area, it remains to be fully elucidated. We decide to incorporate genetic insight into investigation of the causal link between various immune cells, inflammatory factors and pathogenesis of Sjogren syndrome (SS).

View Article and Find Full Text PDF

Background: Systemic sclerosis (SSc) is a rare connective tissue disease, frequently affecting the skin, lungs, and pulmonary vasculature. Approximately 30-50% of SSc patients develop interstitial lung disease (SSc-ILD), with 30-35% of related deaths attributed to it. Even though men are less likely to develop systemic sclerosis, they have a higher incidence of SSc-ILD than women, and they tend to develop it at a younger age with a higher mortality rate.

View Article and Find Full Text PDF

Cancer remains a global health threat, with traditional treatments limited by adverse effects and drug resistance. Nanozyme-based catalytic therapy with high stability and controllable activity provides targeted and specific in situ tumor treatment to address these challenges. More intriguingly, the tremendous advances in nanotechnology have enabled nanozymes to rival the catalytic activity of natural enzymes, presenting an exciting opportunity for innovating antitumor nanodrugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!