We studied the effect of triterpenoid saponins on the development of free-living stages of Heligmosomoides bakeri, a parasitic nematode of the mouse intestine. We evaluated the effectiveness of oleane-type glucuronides (GlcUAOA) isolated from Calendula officinalis and Beta vulgaris. The rhodamine 123 retention assay was used to detect dysfunctions of the major membrane transporter for xenobiotics, P-glycoprotein (Pgp). Both C. officinals and B. vulgaris GlcUAOA affect the development of the free living stages and function of Pgp in H. bakeri. The GlcUAOA inhibits egg hatching and moulting of larvae and also changes their morphology. These saponin fractions reversed the toxic effect of thiabendazole on the nematode; the function of Pgp was also inhibited.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetpar.2011.01.053DOI Listing

Publication Analysis

Top Keywords

triterpenoid saponins
8
free-living stages
8
stages heligmosomoides
8
heligmosomoides bakeri
8
function pgp
8
saponins affect
4
affect function
4
function p-glycoprotein
4
p-glycoprotein reduce
4
reduce survival
4

Similar Publications

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Over-accumulation of reactive oxygen species (ROS) causes hepatocyte dysfunction and apoptosis that might lead to the progression of liver damage. Sirtuin-3 (SIRT3), the main NAD+-dependent deacetylase located in mitochondria, has a critical role in regulation of mitochondrial function and ROS production as well as in the mitochondrial antioxidant mechanism. This study explores the roles of astragaloside IV (AST-IV) and formononetin (FMR) in connection with SIRT3 for potential antioxidative effects.

View Article and Find Full Text PDF

Enhancement of Doxorubicin Efficacy by Bacopaside II in Triple-Negative Breast Cancer Cells.

Biomolecules

January 2025

Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia.

Background: Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options and high resistance to chemotherapy. Doxorubicin is commonly used, but its efficacy is limited by variable sensitivity and resistance. Bacopaside II, a saponin compound, has shown anti-cancer potential.

View Article and Find Full Text PDF

Two previously undescribed triterpenoid saponins from the roots and rhizomes of Maxim.

Front Chem

January 2025

Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China.

Since ancient times, plants have provided humans with important bioactive compounds for the treatment of various diseases. Nine compounds were isolated from the roots and rhizomes of Caulophyllum robustum (a plant in the family Panaxaceae), including two new saponins C. Spanion A and C.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction plays a crucial role in the development of a variety of diseases, notably neurodegenerative disorders, cardiovascular diseases, metabolic syndrome, and cancer. Natural saponins, which are intricate glycosides characterized by steroidal or triterpenoid structures, have attracted interest due to their diverse pharmacological benefits, including anti-inflammatory, antiviral, and anti-aging effects.

Purpose: This review synthesizes recent advancements in understanding mitochondrial dysfunction and explores how saponins can modulate mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!