AI Article Synopsis

  • HDAC inhibitors like trichostatin A (TSA) have shown potential as anti-tumor agents by inducing cell cycle arrest and apoptosis in various tumors, but the exact mechanisms behind their effects are not fully understood.
  • In the study, TSA was found to activate p38MAPK, which in turn phosphorylated and activated the tumor suppressor protein p53, leading to increased expression of the pro-apoptotic protein Bax and a decrease in survivin, an anti-apoptotic factor, in C6 glioma cells.
  • The findings suggest that TSA induces apoptosis through the p38MAPK-p53 pathway, while also negatively regulating the IKK-NF-κB signaling pathway, highlighting the complex signaling

Article Abstract

Background: Histone deacetylase (HDAC) inhibitors were demonstrated to induce cell cycle arrest, promote cell differentiation or apoptosis, and inhibit metastasis. HDAC inhibitors have thus emerged as a new class of anti-tumor agents for various types of tumors. However, the mechanisms by which HDAC inhibition-induced cell death remain to be fully defined.

Methods: In the present study, we explored the apoptotic actions of trichostatin A (TSA), a HDAC inhibitor, in C6 glioma cells.

Results: TSA activated p38 mitogen-activated protein kinase (p38MAPK), leading to p53 phosphorylation and activation. P53, a proapoptotic transcription factor, in turn transactivated the expression of a proapoptotic protein, Bax. In addition, survivin, a member of inhibitor of apoptotic protein, was significantly decreased in TSA-treated C6 cells. P53 recruited to the endogenous survivin promoter region was increased and accompanied by decreasing recruitment of SP1 in response to TSA. TSA was also shown to induce IKK dephosphorylation and to suppress NF-κB reporter activity.

Conclusions: TSA may cause C6 cell apoptosis through activating p38MAPK-p53 cascade resulting in Bax expression and survivin suppression. Negative regulation of IKK-NF-κB signaling may also lead to p53 activation and contribute to TSA apoptotic actions.

General Significance: TSA-induced p53 activation may occur through p53 modification by phosphorylation or by acetylation via IKK inactivation. The present study delineates, in part, the signaling pathways involved in TSA-induced glioma cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2011.02.006DOI Listing

Publication Analysis

Top Keywords

cell death
12
glioma cell
8
hdac inhibitors
8
p53 activation
8
p53
7
cell
6
tsa
6
p53 trichostatin
4
trichostatin induced
4
induced glioma
4

Similar Publications

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known.

View Article and Find Full Text PDF

Background: As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probiotic, confers a variety of benefits including anti-inflammatory and antioxidant properties.

Aim: The purpose of this study was to investigate whether dietary BC can effectively alleviate hepatic injury caused by KP.

View Article and Find Full Text PDF

Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!