Background & Aims: Hepatitis C virus (HCV) acquires mutations that allow it to escape the CD8+ T-cell response, although the extent to which this process contributes to viral evolution at the population level is not clear. We studied viral adaptation using data from a large outbreak of HCV genotype 1b infection that occurred among women immunized with contaminated immunoglobulin from 1977 to 1978.
Methods: The HCV nonstructural protein coding regions NS3-NS5B were sequenced from 78 patients, and mutations were mapped according to their location inside or outside previously described CD8+ T-cell epitopes. A statistical approach was developed to identify sites/regions under reproducible selection pressure associated with HLA class I.
Results: The frequency of nonsynonymous mutations was significantly higher inside previously described CD8+ T-cell epitopes than outside-particularly in NS3/4A and NS5B. We identified new regions that are under selection pressure, indicating that not all CD8+ T-cell epitopes have been identified; 6 new epitopes that interact with CD8+ T cells were identified and confirmed in vitro. In some CD8+ T-cell epitopes mutations were reproducibly identified in patients that shared the relevant HLA allele, indicating immune pressure at the population level. There was statistical support for selection of mutations in 18 individual epitopes. Interestingly, 14 of these were restricted by HLA-B allele.
Conclusions: HLA class I-associated selection pressure on the nonstructural proteins and here predominantly on NS3/4A and NS5B promotes evolution of HCV. HLA-B alleles have a dominant effect in this selection process. Adaptation of HCV to the CD8+ T-cell response at the population level creates challenges for vaccine design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2011.02.060 | DOI Listing |
Cancers (Basel)
December 2024
Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA.
Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary.
Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications.
View Article and Find Full Text PDFJ Immunother Cancer
December 2024
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.
Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).
J Immunother Cancer
December 2024
Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
Objective: Targeting CD47 for cancer immunotherapy has been studied in many clinical trials for the treatment of patients with advanced tumors. However, this therapeutic approach is often hampered by on-target side effects, physical barriers, and immunosuppressive tumor microenvironment (TME).
Methods: To improve therapeutic efficacy while minimizing toxicities, we engineered an oncolytic vaccinia virus (OVV) encoding an anti-CD47 nanobody (OVV-αCD47nb).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!