Here, we reported the synthesis of a novel topoisomerase II inhibitor, MHY336, which that has strong topoisomerase-mediated anticancer activity but fewer side effects than other topoisomerase II inhibitors. The catalytic activity of MHY336 on the topoisomerase II enzyme was the same as that of the etoposide. In a cell-free system, MHY336 exhibited a potent activity on scavenging of reactive oxygen species against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative stress. An in vitro cell-based assay demonstrated that MHY336 significantly inhibited the proliferation of three prostate cancer cell lines, LNCaP, PC-3, and DU145 cells. Notably, the cytotoxicity of MHY336 was more potent in LNCaP cells (IC(50)=1.39 μM) than in DU145 (IC(50)=2.94 μM) and PC3 cells (IC(50)=3.72 μM). Furthermore, MHY336 treatment induced similar levels of cytotoxicity compared to doxorubicin treatment (IC(50)=1.55 μM) in LNCap cells. Also, MHY336 significantly down-regulated topoisomerase II alpha expression and up-regulated p53 expression in LNCaP cells (wild-type p53), whereas it up-regulated the topoisomerase II alpha protein in both DU145 and PC3 cells (p53 mutated or deleted). MHY336 induced G2/M or S phase arrest in LNCaP cells through a well-documented topoisomerase II-dependent mechanism. Further studies using Annexin V-FITC binding assay, DAPI staining, and Western blot analyses illustrated that MHY336 markedly induced apoptotic cell death via the mitochondria-mediated intrinsic pathway in LNCaP cells. These results suggest that MHY336 is an attractive chemotherapeutic agent because of its topoisomerase II-mediated anti-tumour activity in human prostate cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2011.02.015 | DOI Listing |
Anticancer Drugs
January 2025
School of Clinical Medicine, Zhaoqing Medical College, Zhaoqing, Guangdong, China.
The uncertain ferroptosis-related role of berberine in prostate cancer was explored using network pharmacology methodology. Integration of ferroptosis targets in prostate cancer from the Genecard database and berberine targets from the Traditional Chinese Medicine Systems Pharmacology and SwissTargetPrediction databases revealed 17 common targets. Among these, 10 hub genes, including CCNB1, CDK1, AURKA, AR, CDC42, ICAM1, TYMS, NTRK1, PTGS2, and SCD, were identified.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Tumor Prevention Mechanism of Traditional Chinese Medicine,Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Traditional Chinese Medicine Tumour in Hunan Universities, Hunan University of Chinese Medicine Changsha 410208, China College of Integrative Medicine, Hunan University of Chinese Medicine Changsha 410208, China.
Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
This study investigated tempol action on genes and miRNAs related to NFκB pathway in androgen dependent or independent cell lines and in TRAMP model in the early and late-stages of cancer progression. A bioinformatic search was conducted to select the miRNAs to be measured based on the genes of interest from NFκB pathway. The miR-let-7c-5p, miR-26a-5p and miR-155-5p and five target genes (BCL2, BCL2L1, RELA, TNF, PTGS2) were chosen for RT-PCR and gene enrichment analyses.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University Providence, RI 02903, USA.
Androgen receptor (AR) signaling is a target in prostate cancer therapy and can be treated with non-steroidal anti-androgens (NSAA) including enzalutamide, and apalutamide for patients with advanced disease. Metastatic castration-resistant prostate cancer (mCPRC) develop resistance becomes refractory to therapy limiting patient overall survival. Darolutamide is a novel next-generation androgen receptor-signaling inhibitor that is FDA approved for non-metastatic castration resistant prostate cancer (nmCRPC).
View Article and Find Full Text PDFAnal Cell Pathol (Amst)
January 2025
Department of Urology, The First Hospital of Jilin University, Changchun, China.
This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC). Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!