Nucleotide polymorphisms at genomic regions including 17 nuclear loci, two chloroplast and one mitochondrial DNA fragments were used to study the speciation history of three pine species: dwarf mountain pine (Pinus mugo), peat-bog pine (P. uliginosa) and Scots pine (P. sylvestris). We set out to investigate three specific speciation scenarios: (I) P. uliginosa is a homoploid hybrid between the other two, (II) the species have evolved without gene flow after divergence and (III) there has been substantial gene flow between the species since their divergence. Overall, the genetic data suggest that P. mugo and P. uliginosa share the same gene pool (average net divergence of 0.0001) and that the phenotypic differences (e.g. growth form) are most likely due to very limited areas of the genome. P. mugo and P. uliginosa are more diverged from P. sylvestris than from each other (average net divergence of 0.0027 and 0.0026, respectively). The nucleotide patterns can best be explained by the divergence with migration speciation scenario, although the hybrid speciation scenario with small genomic contribution from P. sylvestris cannot be completely ruled out. We suggest that the large amount of shared polymorphisms between the pine taxa and the lack of monophyly at all loci studied between P. sylvestris and P. mugo-P. uliginosa can largely be explained by relatively recent speciation history and large effective population sizes but also by interspecific gene flow. These closely related pine taxa form an excellent system for searching for loci involved in adaptive variation as they are differentiated in phenotype and ecology but have very similar genetic background.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-294X.2011.05037.x | DOI Listing |
Ann Bot
January 2025
Département de Biologie, Université Laval, Canada.
Background And Aims: Resolving the phylogeny of hornworts is critical in understanding the evolution of key morphological characters that are unique to the group, including the pyrenoid. Extensive phylogenomic analyses have revealed unexpected complexities in the placement of Leiosporoceros, the previously identified sister taxon to other hornworts. We explore the role of incomplete lineage sorting (ILS) and ancient reticulation in resolving interrelationships and comprehending the diversification and evolutionary processes within hornworts.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA.
Environmental variation often drives evolutionary processes like population differentiation, local adaptation and speciation. We used genome-scale data to investigate the contribution of environmental variation to evolution of the North Caribbean bark anole (Anolis distichus), a widespread common lizard that exhibits impressive phenotypic variation across varying habitats on the island of Hispaniola. We obtained new double-digest restriction-associated DNA sequence data (ddRADseq) from nearly 200 individuals and used 53 GIS data layers representing a range of environmental variables.
View Article and Find Full Text PDFAm J Bot
January 2025
School of Biological Sciences, Washington State University, Pullman, 99164, Washington, USA.
Yi Chuan
January 2025
Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Being the most magnificent plateau in elevation and size on Earth, the Qinghai-Tibet Plateau has a profound impact on biodiversity due to the unique geographic and climatic conditions. Here we review the speciation patterns and genetic diversity of the birds from the Qinghai-Tibet Plateau in relation to the geological history and climatic changes. First, the uplift of the Qinghai-Tibet Plateau forms a geographic barrier and promotes interspecific and intraspecific genetic differentiation.
View Article and Find Full Text PDFYi Chuan
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
Since Darwin's era, speciation has been one of the most central issues in evolutionary biology studies. Understanding the processes of species origin is crucial in deepening our understanding of the formation of species biodiversity, which is essential for their protections. However, speciation research has been challenging due to the rather complex evolutionary histories of many extant species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!