Glycosaminoglycans, like heparin, are frequently incorporated in biomaterials because of their capacity to bind and store growth factors and because of their hydrating properties. Heparin is also often used in biomaterials for its anticoagulant activity. Analysis of biomaterial-bound heparin is challenging because most assays are based on heparin in solution. In this study, seven different methods were probed to analyze heparin covalently attached to collagen scaffolds. For each method, the basic mechanism and the advantages and disadvantages are given. An analysis by the factor Xa assay and the Farndale assay clearly indicated that the amount of immobilized heparin cannot be determined correctly when the scaffold is intact. Scaffolds had to be proteolytically digested or acid treated to obtain reliable measurements. Methods used to quantify the amount of bound heparin included a hexosamine assay, an uronic acid assay, a Farndale assay, agarose gel electrophoresis, and immuno-dot blot analysis. Location and semiquantification of heparin were accomplished by immunofluorescence. Although all assays had their advantages and disadvantages, the hexosamine assay turned out to be the most robust and is recommended as the preferred assay to quantify the amount of heparin bound to scaffolds. It is applicable to all scaffolds that are acid hydrolyzable. This study may allow researchers in the field to select the most appropriate method to analyze glycosaminoglycans in biomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEC.2011.0010 | DOI Listing |
Trials
December 2024
Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
Background: Intermediate-high risk pulmonary embolism (PE) carries a significant risk of hemodynamic deterioration or death. Treatment should balance efficacy in reducing clot burden with the risk of complications, particularly bleeding. Previous studies on high-dose, short-term thrombolysis with alteplase (rtPA) showed a reduced risk of hemodynamic deterioration but no change in mortality and increased bleeding complications.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao, 266100, Shandong, People's Republic of China.
Background: Venous thromboembolism (VTE) is a common complication after hip arthroplasty. Here, we investigated the clinical efficacy and safety of prophylactic aspirin vs. conventional therapy in hip arthroplasty for femoral neck fracture.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe/Fe and Cu/Cu.
View Article and Find Full Text PDFJ Endovasc Ther
December 2024
Department of Vascular and Endovascular Surgery, Klinik Ottakring, Wiener Gesundheitsverbund, Wien, Austria.
Objective: This study offers a retrospective assessment of a single-center experience using cerebrospinal fluid catheters to reduce the risk of perioperative spinal cord injury in patients undergoing single-staged complex endovascular juxtarenal or thoracoabdominal aortic aneurysm repair.
Results: A total of 97 patients were included. On average, 70.
J Pharm Sci
December 2024
School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China. Electronic address:
In order to delay the progression of Rheumatoid Arthritis (RA) in patients, and to prevent further teratogenesis and irreversible bone erosion through drug intervention in the early stages of inflammation, this experiment used the mRNA encoding heat shock protein 10 (HSP10) (H-mRNA) as the main therapeutic drug and used Microfluidics technology to prepare lipid nanoparticles (LNP) (H-mRNA LNPs) containing H-mRNA, and the surface of H-mRNA-LNPs was modified using heparin particals to obtain the final formulation H-mRNA-LNPs @ heparin/ Protamine. Through the sequence modification and effect evaluation of H-mRNA, we explored the formulation screening, physical characterization, cytotoxicity in vitro, distribution in vivo, pharmacodynamics in vivo, and safety in vivo of the prepared lipid nanoparticles, which proved that this nano-preparation had good anti Rheumatoid Arthritis effects, and conducted a preliminary exploration for the application of nucleic acid drugs in the treatment of diseases outside of tumors. This research would provide new ideas for the treatment of RA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!