In tissue engineering research, various three-dimensional (3D) techniques are available to study cell morphology, biomaterials, and their relations. To overcome disadvantages of frequently used imaging techniques, in the current study stereoimaging scanning electron microscopy (SEM) is proposed. First, the 3D SEM application was validated using a series of standardized microspheres. Thereafter, MC-3T3 cell morphology was visualized and cell parameters as cell height were quantified on titanium and calcium-phosphate materials using 3D reconstruction software. Besides 3D visualization of the cells, quantitative assessment showed significant substrate dependency of cell spreading in time. Such quantification of cell spreading kinetics can be used for optimization of tissue engineering scaffold surface properties. However, further standardization of SEM image acquisition and 3D SEM software settings are still essential for 3D cell analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEC.2010.0455DOI Listing

Publication Analysis

Top Keywords

scanning electron
8
electron microscopy
8
tissue engineering
8
cell spreading
8
cell
6
microscopy stereoimaging
4
stereoimaging three-dimensional
4
three-dimensional visualization
4
visualization analysis
4
analysis cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!