The electronic absorption spectra of single crystals of Cs(2)NaHoF(6) have been recorded in the spectral region between 4700 and 42000 cm(-1) at temperatures down to 10 K. The structure in the (5)I(8) → (5)I(J) (J = 7-4), (5)F(J) (J = 5-1), (5)S(2), (5)G(J) (J = 4-6), (3)K(J) (J = 7, 8) transitions has been analyzed and assigned. The emission spectra (5)S(2) → (5)I(J) (J = 6-8) and (5)G(4) → (5)I(J) (J = 5-7), (5)F(5) have also been recorded at 10 K for crystals of Cs(2)NaHoF(6) and partly also for samples of Cs(2)NaHoF(6):Yb(3+). The spectra comprise magnetic dipole zero phonon lines and electric dipole allowed one-phonon vibronic sidebands. From the detailed interpretation of the emission and absorption spectra, aided by a clear understanding of the vibrational behavior of the HoF(6)(3-) moiety and by magnetic dipole intensity calculations, a data set of 59 energy levels spanning 17 multiplet terms was derived. Crystal field calculations were then performed using a 4f(10) basis, as well as including the configuration interaction with a p-electron configuration. The latter calculation, which employed 14 parameters, gave better agreement with experiment and the mean deviation was 13.5 cm(-1). A comparison with the energy level fittings for Cs(2)NaHoCl(6) has been included. The crystal field parameters for the fluoro- and chloro-systems followed empirically predicted ratios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp200484j | DOI Listing |
Phys Chem Chem Phys
January 2025
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany.
Interest in organic solar cells (OSCs) is constantly rising in the field of photovoltaic devices. The device performance relies on the bulk heterojunction (BHJ) nanomorphology, which develops during the drying process and additional post-treatment. This work investigates the effect of thermal annealing (TA) on the all-small molecule DRCN5T:PCBM blend with phase field simulations.
View Article and Find Full Text PDFChem Sci
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University Corvallis OR 97331 USA
The reaction between molybdenum(ii) acetate and 5-aminoisophthalic acid (HIso-NH) afforded [MoO(μ-O)(Iso-NH)], a novel molybdenum(v) metal-organic polyhedron (MOP) with a triangular antiprismatic shape stabilized by intramolecular N-H⋯O hydrogen bonds. The synthesis conditions, particularly the choice of solvent and reaction time, led to the precipitation of the Mo(v)-MOP in five distinct crystalline forms. These forms vary in their packing arrangements, co-crystallized solvent molecules, and counter-cations, with three phases containing dimethylammonium (dma) and the other two containing diethylammonium (dea).
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.
Bone tissue regeneration presents a significant challenge in clinical treatment due to inadequate coordination between implant materials and reparative cells at the biomaterial-bone interfaces. This gap underscores the necessity of enhancing interaction modulation between cells and biomaterials, which is a crucial focus in bone tissue engineering. Metal-polyphenolic networks (MPN) are novel inorganic-organic hybrid complexes that are formed through coordination interactions between phenolic ligands and metal ions.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Physical Science and Technology, Xinjiang University 666 Shengli Road Urumqi 830046 China
This study has successfully prepared three kinds of surface enhanced raman scattering (SERS) substrates, namely AgNP/CuNPs/Bragg-PSi (porous silicon, PSi), AgNPs/CuNPs/PSi and AuNPs/CuNPs/Bragg-PSi by use of an anode electrochemical etching method and a dip plating method. Results show that: the AgNPs/CuNPs/Bragg-PSi substrate has optimal SERS performance and is capable of detecting the Raman spectrum ( = 0.9315) of a 10 M-10 M crystal violet (CV) solution.
View Article and Find Full Text PDFArtificial heterostructures are often realized by stacking different materials to present new emerging properties that are not exhibited by their individual constituents. In this work, non-layered two-dimensional α-MnSe nanosheets were transferred onto LaMnO (LMO) films to obtain a multifunctional heterostructure. The high crystal quality of the MnSe/LMO heterostructure was revealed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!