AI Article Synopsis

Article Abstract

The first ATP-dependent complex formed in pre-mRNA splicing is the prespliceosome, a 30 S complex. This reaction was investigated using partially purified fractions isolated from nuclear extracts of HeLa cells. Previous studies (Furneaux, H. M., Perkins, K. K., Freyer, G. A., Arenas, J., and Hurwitz, J. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 4351-4355) have shown that DEAE-cellulose chromatography of nuclear extracts yielded two fractions (fractions I and II, eluted at 0.2 and 1 M NaCl, respectively) which carried out pre-mRNA splicing only when combined. Fraction II, alone and in the presence of ATP, supported the formation of the 30 S complex. In this report, we have separated fraction II into ribonucleoprotein and protein-rich fractions by isopycnic banding in CsCl. The combination of these two fractions completely replaced fraction II in prespliceosome formation; when supplemented with fraction Ib (1 M NaCl Biorex fraction derived from fraction I), the preparations supported spliceosome formation; when supplemented with fraction I, they yielded spliced products. The CsCl fractions, like fraction II, efficiently converted pre-mRNA to the 30 S complex with high yields (30-70%). The 30 S complex was shown to contain pre-mRNA complexed to U2 small ribonucleoproteins and small amounts of U1 small ribonucleoproteins. The 30 S complex protected a 50-nucleotide region at the 3'-end of the intron from T1 RNase attack. This region included sequences spanning the branch site, the polypyrimidine stretch and the AG dinucleotide of the 3'-splice site. When the 30 S complex was first generated with partially purified fractions, followed by the addition of a large amount of poly(U) or unlabeled pre-mRNA, the 30 S complex could be chased into a 55 S spliceosome complex by the addition of fraction Ib. These results support the conclusion, initially derived from kinetic data, that the 30 S complex is a precursor of the 55 S complex.

Download full-text PDF

Source

Publication Analysis

Top Keywords

complex
12
fraction
9
prespliceosome complex
8
fractions
8
fractions isolated
8
hela cells
8
pre-mrna splicing
8
partially purified
8
purified fractions
8
nuclear extracts
8

Similar Publications

A conformational switch-controlled RNA sensor based on orthogonal dCas12a for RNA imaging in live cells.

Biosens Bioelectron

January 2025

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:

RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.

View Article and Find Full Text PDF

Background: Resilience refers to the ability to adapt or recover from stress. There is increasing appreciation that it plays an important role in wholistic patient-centered care and may affect patient outcomes, including those of orthopaedic surgery. Despite being a focus of the current orthopaedic evidence, there is no strong understanding yet of whether resilience is a stable patient quality or a dynamic one that may be modified perioperatively to improve patient-reported outcome scores.

View Article and Find Full Text PDF

We appreciate Reierson's thoughtful commentary on our 2019 paper, which described our experiences, ethical process, judgment calls, and lessons from a 2016-2017 data-sharing pilot between Crisis Text Line and academic researchers. The commentary raises important questions about the ethical conduct of health research in the digital age, particularly regarding informed consent, potential conflicts of interest, and the protection of vulnerable populations. Our article focused specifically on the noncommercial use of Crisis Text Line data for research purposes, so we restrict our reply to points relevant to such usage.

View Article and Find Full Text PDF

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!