Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As stipulated by ICH Q8 R2 (1), prediction of critical process parameters based on process modeling is a part of enhanced, quality by design approach to product development. In this work, we discuss a Bayesian model for the prediction of primary drying phase duration. The model is based on the premise that resistance to dry layer mass transfer is product specific, and is a function of nucleation temperature. The predicted duration of primary drying was experimentally verified on the lab scale lyophilizer. It is suggested that the model be used during scale-up activities in order to minimize trial and error and reduce costs associated with expensive large scale experiments. The proposed approach extends the work of Searles et al. (2) by adding a Bayesian treatment to primary drying modeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066384 | PMC |
http://dx.doi.org/10.1208/s12249-011-9598-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!