A number of reports have been published regarding the applicability of existing regulatory frameworks to protect consumers and the environment from potentially adverse effects related to introduction of nanomaterials into commerce in the United States and the European Union. However, a detailed comparison of the regulatory approaches to worker safety and health in the USA and in the EU is lacking. This report aims to fill this gap by reviewing regulatory frameworks designed to protect workers and their possible application to nanotechnology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2486/indhealth.ms1228 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104.
Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.
View Article and Find Full Text PDFSci Adv
January 2025
Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA.
Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland.
Importance: Digital health in biomedical research and its expanding list of potential clinical applications are rapidly evolving. A combination of new digital health technologies (DHTs), novel uses of existing DHTs through artificial intelligence- and machine learning-based algorithms, and improved integration and analysis of data from multiple sources has enabled broader use and delivery of these tools for research and health care purposes. The aim of this study was to assess the growth and overall trajectory of DHT funding through a National Institutes of Health (NIH)-wide grant portfolio analysis.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia.
Combination immune checkpoint inhibitors (nivolumab and ipilimumab) are currently a first-line treatment for mesothelioma; however, not all patients respond. The efficacy of treatment is influenced by the tumor microenvironment. Murine mesothelioma tumors were irritated with various radiotherapy doses.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!