Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The widespread use of NO(3)(-) fertilization has had a major ecological impact. NH(4)(+) nutrition may help to reduce this impact, although high NH(4)(+) concentrations are toxic for most plants. The underlying tolerance mechanisms are not yet fully understood, although they are thought to include the limitation of C, the disruption of ion homeostasis, and a wasteful NH(4)(+) influx/efflux cycle that carries an extra energetic cost for root cells. In this study, high irradiance (HI) was found to induce a notable tolerance to NH(4)(+) in the range 2.5-10mM in pea plants by inducing higher C availability, as shown by carbohydrate content. This capacity was accompanied by a general lower relative N content, indicating that tolerance is not achieved through higher net N assimilation on C-skeletons, and it was also not attributable to increased GS content or activity in roots or leaves. Moreover, HI plants showed higher ATP content and respiration rates. This extra energy availability is related to the internal NH(4)(+) content regulation (probably NH(4)(+) influx/efflux) and to an improvement of the cell ionic balance. The limited C availability at lower irradiance (LI) and high NH(4)(+) resulted in a series of metabolic imbalances, as reflected in a much higher organic acid content, thereby suggesting that the origin of the toxicity in plants cultured at high NH(4)(+) and LI is related to their inability to avoid large-scale accumulation of the NH(4)(+) ion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2010.11.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!