Sepsis is now understood to affect a variety of changes in the host, chief among them being alterations in immune system function. Proper immune function involves a competent proinflammatory response to stimuli as well as a regulated counteracting force to restore homeostasis and prevent systemic inflammation and organ dysfunction. Broad-spectrum suppression of the inflammatory response has not been shown to be beneficial for patients suffering from septic disease. In fact, sepsis-related immune suppression has become increasingly recognized as an important contributor to late morbidity and mortality in the critically ill. Giamarellos-Bourboulis and colleagues detail the impaired ability of septic patients to produce proinflammatory cytokines upon ex vivo stimulation, and introduce altered caspase-1 activity as potentially contributory to this process. Proper understanding of the cellular and molecular events resulting in immune suppression following sepsis is important in the identification of new strategies for treatment and the ideal timing of therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221988 | PMC |
http://dx.doi.org/10.1186/cc10028 | DOI Listing |
The advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms.
View Article and Find Full Text PDFPhagocytic clearance of apoptotic cancer cells (efferocytosis) by tumor-associated macrophages (TAMs) contributes in a substantial manner to the establishment of an immunosuppressive tumor microenvironment. This puts in context our observation that the female steroid hormone 17β-estradiol (E2) facilitates tumor immune resistance through cancer cell extrinsic Estrogen Receptor (ERalpha;) signaling in TAMs. Notable was the finding that E2 induces the expression of CX3CR1 in TAMs to enable efferocytosis of apoptotic cancer cells which results in the suppression of type I interferon (IFN) signaling.
View Article and Find Full Text PDFWhile the genetic paradigm of cancer etiology has proven powerful, it remains incomplete as evidenced by the widening spectrum of non-cancer cell-autonomous "hallmarks" of cancer. Studies have demonstrated the commonplace presence of high oncogenic mutational burdens in homeostatically-stable epithelia. Hence, the presence of driver mutations alone does not result in cancer.
View Article and Find Full Text PDFFront Immunol
December 2024
Periodontics Department, Dental College of Georgia, Augusta University, Augusta, GA, United States.
Front Immunol
December 2024
Immune Tolerance Laboratory, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney Australia an Ingham Institute, Liverpool, NSW, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!