Mannose-binding lectin (MBL) is an oligomeric serum lectin involved in innate immunity. Human MBL is complexed with three types of serine proteases (MASP-1, MASP-2 and MASP-3) and two types of their truncated forms (sMAP and MAp44). When an MBL complex binds to carbohydrates of pathogens, the complement system is activated via the lectin pathway. Human MBL is a mixture of different sized oligomers that range mainly from trimers to hexamers. It has been suggested that different MBL oligomers may have distinct MASP compositions. In the present study, an MBL trimer (MBL-I) exclusive of other oligomers was isolated from human serum by chromatography. Immunoblot analysis of MBL-I revealed that it had been co-purified with MASP-1 and sMAP. This suggests that MASP-1 and sMAP are bound to each other in MBL-I. The MBL-I complex was found to activate C2, but to lack the ability to activate C4 due to the absence of MASP-2.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1348-0421.2011.00330.xDOI Listing

Publication Analysis

Top Keywords

mannose-binding lectin
8
serine proteases
8
human mbl
8
masp-1 smap
8
mbl
6
characterization complex
4
complex mannose-binding
4
lectin
4
lectin trimer
4
trimer mannose-binding
4

Similar Publications

Introduction: Breast cancer (BC) is the most prevalent malignant tumor in women, with triple-negative breast cancer (TNBC) showing the poorest prognosis among all subtypes. Glycosylation is increasingly recognized as a critical biomarker in the tumor microenvironment, particularly in BC. However, the glycosylation-related genes associated with TNBC have not yet been defined.

View Article and Find Full Text PDF

The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.

View Article and Find Full Text PDF

Sickle Cell Anemia and Inflammation: A Review of Stones and Landmarks Paving the Road in the Last 25 Years.

Hematol Rep

January 2025

Laboratory of Immunobiology and Immunogenetics, Post Graduation Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil.

A quarter of a century ago, sickle cell disease (SCD) was mainly viewed as a typical genetic disease inherited as a classical Mendelian trait. Therefore, the main focus concerning SCD was on diagnosis, meaning, genotyping, and identification of homozygous and heterozygous individuals carrying the relevant HbS mutant allele. Nowadays, it is well established that sickle cell disease is indeed the result of homozygosis for the HbS variant, although this single feature is not capable of explaining the highly diverse clinical presentation of SCD.

View Article and Find Full Text PDF

Probing the interaction of mannose-binding lectin with healthy and sickle cell anemia red blood cells and its role in cellular biomechanics.

Int J Biol Macromol

January 2025

Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil. Electronic address:

Mannose-binding lectin (MBL) is an important glycoprotein of the human innate immune system. Furthermore, individuals with sickle cell anemia (SCA) and MBL deficiency seem more susceptible to vaso-occlusive crises, suggesting an MBL role on HbSS red blood cells (RBCs). This study investigated the interaction of MBL with HbA (healthy) and HbSS RBCs using optical tweezers (OT) and atomic force microscopy (AFM).

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!