Langmuir films have been fabricated from 4-[4'-(4''-thioacetyl-phenyleneethynylene)-phenyleneethynylene]-aniline (NOPES) after cleavage of the thioacetyl protecting group. Characterization by surface pressure vs area per molecule isotherms and Brewster angle microscopy reveal the formation of a high quality monolayer at the air-water interface. One layer Langmuir-Blodgett (LB) films were readily fabricated by the transfer of the NOPES Langmuir film onto solid substrates. X-ray photoelectron spectroscopy (XPS), surface polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and quartz crystal microbalance (QCM) experiments conclusively demonstrate the formation of one layer LB films in which the functional group associated with binding to the substrate can be tailored by the film transfer conditions. Using LB methods this molecule could be transferred to gold samples with either the amine or thiol group attached to the gold surface. The amine group is directly attached to the gold substrate (Au-NH(2)-OPE-SH) when the substrate is initially immersed in the subphase and withdrawn during the transfer process; in contrast, monomolecular films in which the thiolate group is attached to the gold substrate (Au-S-OPE-NH(2)) are obtained when the substrate is initially out of the subphase and immersed during the transfer process. The morphology of these films was analyzed by atomic force microscopy (AFM), showing the formation of homogeneous layers. Film homogeneity was confirmed by cyclic voltammetry, which revealed a large passivation of gold electrodes covered by NOPES monolayers. Electrical properties for both polar orientated junctions have been investigated by scanning tunnelling microscopy (STM), with both orientations featuring a nonrectifying behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la104734j | DOI Listing |
Biomater Transl
September 2024
Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang Province, China.
Bone, cartilage, and soft tissue regeneration is a complex process involving many cellular activities across various cell types. Autografts remain the "gold standard" for the regeneration of these tissues. However, the use of autografts is associated with many disadvantages, including donor scarcity, the requirement of multiple surgeries, and the risk of infection.
View Article and Find Full Text PDFJ Funct Biomater
November 2024
Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.
Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain.
Preeclampsia is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity worldwide. Early diagnosis is crucial for mitigating its adverse effects, and recent investigations have identified endoglin as a potential biomarker for this purpose. Here, we present the development of a hybrid biosensor platform for the ultrasensitive detection of endoglin, aimed at enabling the early diagnosis of preeclampsia.
View Article and Find Full Text PDFACS Omega
December 2024
Laboratoire de Recherche: Caractérisations, Applications et Modélisation de Matériaux, Université de Tunis El Manar, Faculté des Sciences de Tunis, Tunis 2092, Tunisia.
This study optimizes immunofluorescence techniques using gold nanoparticles (AuNPs) to improve visualization of endothelial nitric oxide synthase (eNOS) in gill tissue. Two types of AuNP dispersions, stabilized in phosphate buffered saline (PBS) and citrate buffer (CB), were evaluated for their imaging performance. AuNPs suspended in PBS provided significantly better optical contrast due to uniform distribution and effective tissue attachment, whereas citrate-suspended AuNPs exhibited aggregation, resulting in reduced contrast.
View Article and Find Full Text PDFLangmuir
December 2024
International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
This study investigates the effect of different linkers and solvents on the immobilization of DNA probes on graphene surfaces, which are crucial for developing high-performance biosensors. Quartz crystal microbalance with dissipation (QCM-D) measurements were used to characterize in situ and real-time the immobilization of ssDNA and hybridization efficiency on model graphene surfaces. The DNA probes immobilization kinetics and thermodynamics were systematically investigated for all the pairings between three bifunctional linkers─1-pyrenebutyric acid succinimidyl ester (PBSE), Fluorenylmethylsuccinimidyl carbonate (FSC), and Acridine Orange (AO) succinimidyl ester─and three organic solvents (DMF, DMSO, and 10% DMF/ethanol).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!