Tryptophan (Trp) fluorescence is potentially a powerful probe for studying the conformational ensembles of proteins in solution, as it is highly sensitive to the local electrostatic environment of the indole side chain. However, interpretation of the wavelength-dependent complex fluorescence decays of proteins has been stymied by controversy about two plausible origins of the typical multiple fluorescence lifetimes: multiple ground-state populations or excited-state relaxation. The latter naturally predicts the commonly observed wavelength-lifetime correlation between decay components, which associates short lifetimes with blue-shifted emission spectra and long lifetimes with red-shifted spectra. Here we show how multiple conformational populations also lead to the same strong wavelength-lifetime correlation in cyclic hexapeptides containing a single Trp residue. Fluorescence quenching in these peptides is due to electron transfer. Quantum mechanics-molecular mechanics simulations with 150-ps trajectories were used to calculate fluorescence wavelengths and lifetimes for the six canonical rotamers of seven hexapeptides in aqueous solution at room temperature. The simulations capture most of the unexpected diversity of the fluorescence properties of the seven peptides and reveal that rotamers having blue-shifted emission spectra, i.e., higher average energy, have an increased probability for quenching, i.e., shorter average lifetime, during large fluctuations in environment that bring the nonfluorescent charge transfer state and the fluorescing state into resonance. This general mechanism should also be operative in proteins that exhibit multiexponential fluorescence decays, where myriad other sources of conformational heterogeneity besides rotamers are possible.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp111925wDOI Listing

Publication Analysis

Top Keywords

fluorescence
8
fluorescence decays
8
wavelength-lifetime correlation
8
blue-shifted emission
8
emission spectra
8
lifetimes
5
correlation tryptophan
4
tryptophan fluorescence
4
fluorescence spectral
4
spectral shifts
4

Similar Publications

In this study, we employed a novel fluorescent probe, RO7304924-which selectively targets cannabinoid 2 receptor (CB2R)-to assess the lateral mobility of CB2R within the plasma membrane of Chinese hamster ovary cells stably expressing a functional, untagged receptor variant. Utilizing confocal fluorescence recovery after photobleaching (FRAP), we quantified the diffusion coefficient and mobile fraction of CB2R, thereby demonstrating the efficacy of RO7304924 as an innovative tool for elucidating the dynamics of this major endocannabinoid-binding G protein-coupled receptor. Our present findings highlight the potential of combining advanced ligand-based fluorescent probes with FRAP for future investigations into the biochemical details of CB2R mobility in living cells, and its impact on receptor-dependent cellular processes.

View Article and Find Full Text PDF

In the present study, a norfloxacin (NFX) fluorescent probe was tailored for the spectrofluorometric measurement of cefepime (CFP). The proposed approach measured the quenching effect of CFP on the fluorescence intensity of NFX in acetate buffer solution. The obtained results show that CFP strongly quenches the fluorescence of NFX in a static mechanism.

View Article and Find Full Text PDF

The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical.  A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical.  This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.

View Article and Find Full Text PDF

Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.

Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.

View Article and Find Full Text PDF

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!