New noncentrosymmetric rare-earth metal gallium thioantimonates, Ln(4)GaSbS(9) were synthesized from stoichiometric element mixtures at 950 °C by high-temperature solid-state reactions. These compounds crystallize in orthorhombic space group Aba2 (no.41) with a = 13.799(3)-13.427(5) Å, b = 14.187(3)-13.756(5) Å, c = 14.323(3)-13.954(5) Å, V = 2804(2)-2577 (2) Å(3), and Z = 8 on going from Ln = Pr to Ho. The asymmetric building units, bimetallic polar (Sb(2)S(5)) units, and dimeric (GaS(4))(2) tetrahedra are in-phase aligned as an infinite single anionic chain of {[(Ga(2)S(6))(Sb(2)S(5))](10-)}(∞) that is further packed in a noncentrosymmetric pseudolayer motif perpendicular to the c axis. Three of the title compounds show large powder second harmonic generation (SHG) effects at 2.05 μm, and two of them also exhibit large transparency ranges (1.75 or 0.75 to 25 μm) in the middle-IR region. Significantly, the Sm-member exhibits the strongest SHG response among sulfides to date with intensity approximately 3.8 times that of the benchmark AgGaS(2). The band structures, indirect band gap nature, bonding strengths, and lone pair effects around Sb have also been studied by Vienna ab initio simulation package calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja1111095 | DOI Listing |
Light Sci Appl
January 2025
Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.
Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.
View Article and Find Full Text PDFAdv Mater
January 2025
Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain.
Twisting 2D van der Waals magnets allows the formation and control of different spin-textures, as skyrmions or magnetic domains. Beyond the rotation angle, different spin reversal processes can be engineered by increasing the number of magnetic layers forming the twisted van der Waals heterostructure. Here, pristine monolayers and bilayers of the A-type antiferromagnet CrSBr are considered as building blocks.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Chemistry, HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China, 100084, Beijing, CHINA.
Expanded heterohelicene composing of alternating linearly and angularly fused multi-resonance (MR) skeleton has garnered wide interest for their promising narrowband emission. Herein, a pair of sym- and asym-expanded heterohelicene isomers are firstly developed by merging boron/oxygen (B/O)-embedded MR triangulene and indolo[3,2,1-jk]carbazole units via one-shot synthesis. Owing to the fully resonating extended helical skeleton, the target heterohelicenes exhibit significantly narrowed spectra bandwidth while emission red-shifting, thus affording deep-blue narrowband emission with peak at around 460 nm, full-width-at-half-maximum (FWHM) of merely 18 nm and near-unity photoluminescence quantum yields.
View Article and Find Full Text PDFJ Org Chem
January 2025
Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany.
Chiral heterocyclic alcohols and amines are frequently used building blocks in the synthesis of fine chemicals and pharmaceuticals. Herein, we report a one-pot photoenzymatic synthesis route for -Boc-3-amino/hydroxy-pyrrolidine and -Boc-4-amino/hydroxy-azepane with up to 90% conversions and >99% enantiomeric excess. The transformation combines a photochemical oxyfunctionalization favored for distal C-H positions with a stereoselective enzymatic transamination or carbonyl reduction step.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.
Makeup modifies facial textures and colors, impacting the precision of face anti-spoofing systems. Many individuals opt for light makeup in their daily lives, which generally does not hinder face identity recognition. However, current research in face anti-spoofing often neglects the influence of light makeup on facial feature recognition, notably the absence of publicly accessible datasets featuring light makeup faces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!